
�¨ Y⌅|8

Master’s Thesis

�©… ÄÑ ı⌅ tÏ§0¡

⇠ı L‡¨ò– �\ l

Scalable Iterative Algorithm for Robust Subspace Clustering:

Convergence and Initialization

⌅ ¡ � (� † : Chun, SangHyuk)

⌅0 ✏ ⌅êıYÄ

School of Electrical Engineering

KAIST

2016

MEE

20143583

⌅¡�. Chun, SangHyuk. Scalable Iterative Algorithm for Robust Subspace Clustering:

Convergence and Initialization. �©… ÄÑ ı⌅ tÏ§0¡ ⇠ı L‡¨ò– �\

l. School of Electrical Engineering . 2016. 24p. Advisor Prof. Jinwoo Shin. Text in

English.

ABSTRACT

Subspace Clustering (SC), a generalized task of Principle Component Analysis (PCA), has been used

extensively for dimensionality reduction of high-dimensional data. Recently, several methods have been

proposed to enhance the robustness of PCA and SC, but most of them are computationally expensive,

especially for high-dimensional large-scale data. In this paper, we develop a much faster algorithm for

optimizing the NP-hard SC objective using a sum of the ↵-th power of `2-norm with 0 < ↵  2, where

↵ = 2 is the standard choice and ↵ < 2 enhances the robustness of SC. The known implementations

achieving a local optimum of the objective would be costly due to the alternation of two separate tasks:

optimal cluster-membership assignment and optimal subspace selection, while the substitution of one

process to a faster surrogate can cause failure in convergence. Furthermore, such an alternating method

has been often criticized due to the sensitivity of initialization. To address the issues, our proposed

algorithm has the following key features: (a) release nested robust PCA loops for subspace update,

(b) use a simplified singular value decomposition that only requires a few matrix-vector multiplications

instead of solving an expensive eigenvector problem and (c) initialize carefully to avoid poor clustering.

We prove that it monotonically converges to a local minimum of the SC objective for any 0 < ↵  2

and finds the true clustering under a statistical assumption on data. In our experiments, it is shown

to converge at an order of magnitude faster than the standard implementation optimizing the same

objective, and outperforms known SC methods in the literature for MNIST handwritten digit dataset.

i

Contents

Abstract . i

Contents . ii

List of Tables . iii

List of Figures . iv

Chapter 1. Introduction 1

Chapter 2. Preliminaries 3

Chapter 3. Scalable Iterative Algorithm for Robust Subspace Clustering 5

3.1 Algorithm description and monotone convergence 5

3.2 Initialization . 7

Chapter 4. Proofs of Theorems 9

4.1 Proof of Theorem 1 . 9

4.1.1 Proof of the monotone convergence of SC-SI 9

4.1.2 Proof of the convergence of SC-SI to a local optimum . 10

4.1.3 Proofs of Lemma 3 and Lemma 4 11

4.2 Proof of Theorem 2 . 12

4.2.1 Proof of performance guarantee of SC-IN 12

4.2.2 Proofs of Lemma 5 and Lemma 6 13

Chapter 5. Experimental Results 17

5.1 Experiment setup . 17

5.2 Convergence and Robustness of SC-SI 18

5.3 Performance comparison between SC-SI and other algorithms . 20

Chapter 6. Conclusion 22

References 23

Summary (in Korean) 25

ii

List of Tables

5.1 Performance comparisons in the average clustering performance (measured by Jaccard

index) for the entire MNIST training data. 21

5.2 Performance comparisons in the average clustering performance (measured by Jaccard

index) for the 5% sampled MNIST training data. 21

iii

List of Figures

1.1 Comparison of (a) EM implementation of subspace clustering for ↵ = 1 and (b) our

approach for subspace clustering for 0 < ↵  2 . 1

5.1 Performance comparisons in (a) convergence and (b) clustering performance measured by

Jaccard Index between SC-SI and SC-EM. SC-IN and R-IN denotes di↵erent initial-

izations, first one is SC-IN in Section 3.2, and a purely random one, respectively. 19

5.2 Required running time per each iteration comparison between SC-SI and SC-EM. (a)

running time and n while d = 1, 000 and r = 10, (b) running time and d while n = 10, 000

and r = 10, (c) running time and r while n = 10, 000 and d = 1, 000. In (a), (b), (c) each

point is obtained from averaging over 10 iterations for di↵erent 10 randomly generated

samples. 19

5.3 Performance comparison of SC-SI among di↵erent ↵, � and SNR (Signal-to-Noise) ratio

in dB. (a) ↵ = 1, 2 for � = 0, i.e., it is random initialization (b) ↵ = 1, 2 for � = 1 (c)

� = 1,1 for ↵ = 1. 19

iv

Chapter 1. Introduction

The investigation of regularity in high-dimensional data generally seeks a low-dimensional represen-

tation with a few simple rules that explains dominant properties of the system [1, 2]. Subspace Clustering

(SC) is one of popular methods for dimensionality reduction, where it generalizes Principal Component

Analysis (PCA) [3] by finding multiple low-dimensional subspaces instead of single one. SC has found

numerous applications in computer vision [4, 5, 6, 7], DNA microarray analysis [8, 9], text-mining [10, 11],

recommendation systems [12, 13] and system identification [14]. We refer the survey paper [7] on the SC

literature for interested readers.

However, the true low-dimensional structure often cannot be retrieved due to noise. In particular

from a few large anomalies or the complete corruption of elements, even when most data follow the

regularity in the low-dimensional subspace. To alleviate the e↵ect of such noise, an algorithm needs

to incorporate robustness by using less information from data abnormally separated from the majority

of data. Canonical methods for incorporating such robustness have appeared in improving PCA. The

squared `2-norm in the traditional PCA objective has been replaced by di↵erent ones to enhance the

robustness, e.g., `1-norm [15, 16, 17, 18, 12] and non-squared `2-norm [19, 20, 21]. In general, the

optimization with `1-norm uses non-analytic methods, whereas that with (squared or non-squared) `2-

norm can use analytic solutions such as Singular Value Decomposition (SVD) that makes the algorithm

interpretable and scalable with appropriate approximation. The additional benefit of `2-norm is providing

rotational invariance [19].

Simple matrix-
vector calculation

Objective re-weighting
& Clustering assignment

Repeat until converge

Objective
re-weighting

Clustering
assignment

Repeat until convergeRPCA-OM Repeat until converge

Iteration to compute
singular vectors

Repeat until converge

(a) High level description of robust SC using RPCA-OM (b) High level description of our approach

Figure 1.1: Comparison of (a) EM implementation of subspace clustering for ↵ = 1 and (b) our approach

for subspace clustering for 0 < ↵  2

In this paper, we study robust SC methods via optimizing a sum of the ↵-th power of `2-norm with

0 < ↵  2, under the assumption that data are composed of m clusters of di↵erent low-dimensional a�ne

subspaces. The classical non-squared and squared `2-norms correspond to ↵ = 1 and ↵ = 2, respectively,

where we study more general setups and smaller ↵ that can be used to further enhance robustness.

This optimization task is NP-hard and generally performed via alternating two steps of Expectation

Maximization (EM) style: optimal cluster-membership assignment and a�ne subspace selection for

each cluster. In particular for ↵ = 1, a sum of non-squared `2-norm objective, the a�ne subspace

selection, called Robust PCA with Optimal Mean (RPCA-OM), was recently studied [21], while that

of linear subspace selection was developed much earlier [19]. The authors of RPCA-OM propose an

alternating procedure between SVD iterations and objective re-weighting. High-level description of

the EM implementation using RPCA-OM is in Figure 1.1 (a). Here, RPCA-OM becomes a major

bottleneck, and the naive back-and-forth optimization is infeasible for large-scale high-dimensional data.

– 1 –

In particular, due to expensive computation of SVD and slow convergence of the nested RPCA-OM

loops.

Contribution: To optimize the SC objective using the ↵-th power of `2-norm, we first design a gener-

alized version of RPCA-OM that works for any 0 < ↵  2, which we call ↵-PCA where 1-PCA coincides

with RPCA-OM. Then, we modify the optimization in ↵-RPCA for subspace selection and dramatically

reduce the running time over the naive EM scheme. Instead of performing exact SVD calculations in

↵-PCA, we use a simplified procedure requiring a few matrix-vector multiplications for subspace update,

where it is a few iterations of the subspace-iteration method (also called orthogonal-iteration) [22] using

QR decomposition. Here, the main assumption is that the matrix-vector multiplication can be done e�-

ciently. We further release nested ↵-PCA loops, i.e., perform the clustering assignment without waiting

for the convergence of subspace update. Our approach is summarized in Figure 1.1 (b).

Despite these modified e�cient procedures, we prove that the proposed iterative algorithm mono-

tonically converges to a local optimum like the EM scheme. As we reported in Chapter 5, our proposed

algorithm computes a solution of the same quality with those computed by the EM scheme at an order

of magnitude faster. Such a monotone convergence is not clear even for m = 1 and ↵ = 1, where the

authors of RPCA-OM recently established it. The cases ↵ 6= 1 or m 6= 1 provide additional technical

challenges in establishing the monotone convergence, where our proof utilizes structural properties of QR

decompositions and certain monotonicity in terms of ↵. The spirit of our idea “Don’t wait convergence

for convergence” for such e�cient subspace selection is similar, for example, to contrastive divergence

learning [23] and inexact augmented Lagrange multiplier [24]. However we emphasize that their correct

convergences do not hold in general.

Moreover, we also propose an initialization method to avoid poor clustering, where iterative optimization-

based SC algorithms without careful initialization have been often criticized in the literature [7]. The

proposed initialization can be thought as a randomized version of that used in [25]. The randomness

enhances the robustness against outliers as we show via experiments, and moreover we prove that the

initialization indeed recovers the true clustering under a statistical assumption on data points.

We perform extensive experiments comparing the performances of the proposed scheme and other

prior SC methods. They show that it converges at an order of magnitude faster than known algorithms

optimizing the same SC objective, and outperforms prior SC methods in accuracy for MNIST handwritten

digit datasets. As we evidenced in experiments, our proposed scheme is in particular attractive for large-

scale datasets due to its low complexity, and we believe that it would find numerous applications involving

large-scale robust dimensionality reduction.

Organization: Chapter 2 introduces the ↵-SC optimization task, and explain the EM scheme to solve

it. In Chapter 3, we propose an e�cient iterative algorithm optimizing the ↵-SC objective and its

initialization method to avoid poor clustering. The proof on theoretical results of the algorithm and the

initialization method is presented in Chapter 4. We report our experimental results in Chapter 5.

– 2 –

Chapter 2. Preliminaries

Let X = [x1, x2, . . . , xn] 2 Rd⇥n denote a data matrix of n data points in d dimensional space.

PCA is the problem of finding a low-dimensional subspace representation that best describes high-

dimensional data points. There have been extensive e↵orts in developing more robust PCA methods

in the literature [19, 12, 20, 21] by replacing the squared `2-norm by the `1-norm or the non-squared

`2-norm in the optimizing objective. However, most works on this line ignored the center parameter in

their optimization tasks, and robust PCA which jointly considers the center and subspace parameters

was recently studied [21] for optimizing the non squared `2-norm objective. In this paper, we study a

more generalized setup by introducing parameter 0 < ↵  2 as follows:

↵-PCA: min
b,U :U>U=I

nX

i=1

k(I � UU>)(xi � b)k↵2 , (2.1)

where b 2 Rd and U 2 Rd⇥r (r  d) are center and basis parameters respectively. The prior PCAs with

non-squared and squared `2-norms correspond to ↵ = 1 and ↵ = 2, respectively, where smaller ↵ can

be used to enhance its robustness. The above PCA optimization (2.1) is naturally generalized to the

following optimization for subspace clustering:

↵-SC: min
[wij],[bj],[Uj]:

U>
j Uj=I,

Pm
j=1 wij=1

nX

i=1

mX

j=1

wijk(I � UjU
>
j)(xi � bj)k↵2 , (2.2)

where bj , Uj indicate center and basis variables for the j-th subspace and wij 2 {0, 1} does a cluster

membership. We assume that the number m of clusters and the dimension r of subspaces are given.

Since the optimization task (2.2) is NP-hard, it is impossible to compute a global optimum in general.

The popular approximation algorithm is an alternating method of EM type: alternatively update wij

via taking the best cluster j for each data point xi and b, U from a PCA solver in each cluster, which is

formally described as follows.

SC-EM EM implementation for ↵-SC

Input: Data X 2 Rd⇥n, number of clusters m and dimension of subspace r.

Output: Cluster membership variable wij , center vector bj and low dimensional subspace Uj .

Initialize: Initialize wij randomly

repeat

for all j do

1. Update bj , Uj using current data points in cluster j by solving ↵-PCA.

end for

for all i, j do

2. Update clustering information wij by finding the best cluster for each data point.

end for

until converge

If ↵ = 2, an optimal solution of ↵-PCA can be computed by Singular Value Decomposition (SVD).

Using this observation, one can easily prove that SC-EM converges to a local optimum of (2.2) when

↵ = 2. On the other hand, if ↵ 6= 2, it is far from being clear how to design a ↵-PCA solver. An

– 3 –

iterative re-weighting algorithm was proposed [21] for ↵ = 1 case, and the authors prove that it converges

monotonically to a local optimum of the ↵-PCA objective (2.1). We generalize the algorithm for any

0 < ↵  2 and call it PCA-IR which is exactly same as standard PCA using SVD when ↵ = 2 and

same as RPCA-OM [21] when ↵ = 1. In PCA-IR, 1 denotes the column vector with entire elements

being one.

PCA-IR Iterative re-weighting algorithm for ↵-PCA

Input: Data X 2 Rd⇥n, dimension of subspace r.

Output: Center vector b and low dimensional subspace U .

Initialize: Set D as an identity matrix.

repeat

1. Update b as XD1
1>D1 and U as the r largest singular vectors of XD � D11>D

1>D1 .

2. Update the diagonal matrix D as its i-th element is set by ↵
2 k(I � UU>)(xi � b)k(↵�2)

2 .

until converge

The main idea of PCA-IR is that a sum of the squared `2-norm objective is relatively easy while

solving a sum of the ↵-th power of `2-norm objective is di�cult. In each iteration of PCA-IR, instead

of solving original objective (2.1), we solve much easier objective

min
b,U :U>U=I

nX

i=1

dik(I � UU>)(xi � b)k22.

where di =
↵
2 k(I�UU>)(xi�b)k(↵�2)

2 . After update b and U using SVD, we update di and alternatively

update b, U and di until the objective is converged.

We remark that the monotone and local convergence proof [21] does not directly generalize for

PCA-IR. In this paper, we do not prove the monotone and local convergence property of PCA-IR,

but one can easily prove it using similar approach to the proof of Theorem 1. If one use PCA-IR as

a subroutine of SC-EM, it might be slow for high-dimensional (large d) and large-scale (large n) data

because they require many SVD calls until its nested PCA-IR converges. The goal of this paper is to

develop a more e�cient algorithm for optimizing the ↵-SC objective (2.2) in addition to designing a

careful initialization method to avoid poor clusterings.

– 4 –

Chapter 3. Scalable Iterative Algorithm for Robust

Subspace Clustering

3.1 Algorithm description and monotone convergence

In this section, we describe our proposed iterative algorithms for optimizing the ↵-SC optimization

(2.2) for any choice of ↵ 2 (0, 2].

SC-SI Scalable iterative algorithm for ↵-SC

Input: Data X 2 Rd⇥n, number of clusters m, dimension of subspace r, a positive integer k.

Output: Cluster membership variable wij , center vector bj and low dimensional subspace Uj .

Initialize: Initialize bj , Uj , wij and the diagonal matrix Dj using SC-IN.

repeat

for all j do

1. Update bj XDjWj1
1>DjWj1

where Wj is the diagonal matrix whose i-th element is wij .

2. Update Uj by the following steps where k is some positive integer.

repeat

Uj XHjH>
j X>Uj where Hj = DjWj � DjWj11

>DjWj

1>DjWj1
.

Uj Orthonomalization of Uj by QR decomposition.

until k times

end for

for all i, j do

3. Update the i-th element of diagonal matrix Dj by ↵
2 k

�
I � UjU>

j

�
(xi � bj) k(↵�2)

2 .

4. Update wij 1 if j 2 argmin` k
�
I � U`U>

`

�
(xi � b`) k↵2 and wij 0 otherwise.

end for

until converge

Each iteration of SC-SI is designed to solve the following optimization instead of (2.2) directly:

min
[bj],[Uj],[wij]:Pm

j=1 wij=1;U>
j Uj=I

nX

i=1

mX

j=1

dijwijk(I � UjU
>
j) (xi � bj) k22, (3.1)

where dij is the i-th diagonal element of Dj that appears in Step 3 of the algorithm. By taking the

derivative with respect to bj and setting it to zero, one can obtain the optimal form of bj that appears

in Step 1 of the algorithm. Substituting this form of bj into (3.1) and by using kAk2F = tr(AA>) where

kAkF and tr(A) denotes Frobenius norm and trace of matrix A respectively, we have

max
[Uj],[wij]:U>

j Uj=I

X

j

tr
�
U>
j XHjH

>
j X>Uj

�
, (3.2)

where Hj is defined in Step 2 of the algorithm. The optimal Uj of the above optimization can be

computed by SVD of XHj , which might be computationally expensive. Instead, SC-SI update Uj by

– 5 –

using inexact SVD performs only k iterations of the ‘subspace-iteration method’ [22] which involves a few

matrix-vector multiplications in Step 2. Furthermore, it uses Uj at the previous iteration as the initial

point at the next iteration. Hence, if one chooses small k, e.g., k = 1, the computational cost of each

iteration is much smaller compared to that performing SVD exactly, in particular for high dimensional

data sets. Step 3 is designed for re-weighting the squared `2-norm in (3.1) to the ↵-th power of `2-norm

in (2.2), and Step 4 rearranges data points to clusters using updated parameters. We note that for ↵ = 2,

the classical setup, Step 3 is not necessary because D is always the identity matrix.

At a high level, the algorithm couples intermediate steps of three computational tasks: inexact SVD

(Step 1, 2), objective re-weighting (Step 3) and clustering assignments (Step 4). Compared to SC-EM,

SC-SI has much faster subspace selections because of (a) SC-SI uses a cheap inexact SVD procedure

in Step 2 and (b) SC-SI does not waits until the nested PCA procedure converges. Moreover, since the

algorithm only require simple matrix-vector multiplication, SC-SI requires much less memory than SC-

EM. Despite such computational e�ciency, we prove that SC-SI also has the same desired monotone

convergence property stated as follows.

Theorem 1. For any ↵ 2 (0, 2], SC-SI monotonically decreases the objective value of (2.2) at each

iteration. Furthermore, it converges to a local minimum of (2.2).

The proof of Theorem 1 is presented in Section 4.1. We remark that even if SC-SI converges

monotonically, it does not mean the convergence to a local optimum of (2.2) because it optimizes a

di↵erent objective in (3.1). Our proof strategy is similar to that in [21], but establishing the monotone

convergence of SC-SI imposes additional issues due to the parameter ↵ and the modified procedures that

do not exist in [21]. To address the issues, we utilize some structural properties of QR decomposition

and certain monotonicity in terms of ↵.

– 6 –

3.2 Initialization

The clustering performance of SC-SI algorithm is sensitive to how Uj , wij and Dj are initialized.

In this section, we aim for designing careful initialization techniques to avoid poor clustering. To this

end, we propose the initialization method, named SC-IN. It is intuitively natural: it iteratively finds

next center vectors with further distances probabilistically, where the distance is calculated using the

previously chosen subspaces and center vectors. A similar idea for the linear subspace setting was used in

[25], but the authors deterministically chooses next furthest centers as opposed to ours. The probabilistic

nature in our initialization makes it more robust to outliers. Specifically, the parameter � decides the

trade-o↵ between robustness and accuracy, where a choice of lower � > 0 provide more robustness of the

proposed initialization. This is similar to the role of ↵ in the ↵-SC objective. For practical purpose, we

choose � via cross-validation.

SC-IN Initialization method for SC-SI

Input: Data X 2 Rd⇥n, number of clusters m, dimension of subspace r, � > 0, Rc > 0 and bN � r.

Output: bbj , bUj , bwij and bDj .

for j = 1 : m do

1. If j = 1, then choose the first center vector bb1 uniformly random from data points X. Otherwise,

choose bbj from data points as bbj = xi with probability fD(xi,�)P
i0 fD(xi0 ,�)

, where

fD(x,�) = min
1j0j�1

k(I � Uj0U
>
j0)(x� bj0)k�2 .

2. Let bXj be randomly chosen bN points from the set of data whose distance from bbj is less than Rc.

3. Update bbj as bbj 1
bNj

bXj1.

4. Update bUj as bUj r largest singular vectors of bXj �bbj1>.

end for

for all i, j do

5. Set the i-th element of diagonal matrix bDj by ↵
2 k

�
I � UjU>

j

�
(xi � bj) k(↵�2)

2 .

6. Set bwij 1 if j 2 argmin` k
�
I � U`U>

`

�
(xi � b`) k↵2 and bwij 0 otherwise.

end for

Note that Step 2 of SC-IN is not practical but necessary for theoretical guarantee. In practice,

we suggest to modify the algorithm by setting bXj as Nc number of nearest neighbors of bj instead of

selecting data whose distance between bj is less than Rc. In other words, Step 2 of modified practical

initialization algorithm looks like the following: ‘Let bXj be randomly chosen bN data points from Nc

nearest neighbors of bbj ’.
Modified initialization method works well in practice but Theorem 2 is not satisfied any more,

because it does not guarantee uniform randomness of each column of bXj . Detailed experimental setting

is described in Chapter 5.

We obtain the following provable performance guarantee of the initialization method under a sta-

tistical assumption on data points.

– 7 –

Theorem 2. Suppose there are m number of clusters where the j-th cluster has an optimal subspace

Uj 2 Rd⇥r
and a center bj 2 Rd

. Suppose all Uj are independent. i.e., U>
` Uj = U>

j U` = 0 for all ` 6= j.

Also suppose all bj satisfy 4
p
r(1 + "2)  kbj � b`k2 for all j 6= `. Let Uj? 2 Rd⇥(d�r)

be the orthogonal

subspace of Uj, i.e.,

UjU
>
j + Uj?U

>
j? = I and U>

j Uj? = U>
j?Uj = 0.

For the j-th cluster, draw
n�no
m points and each point is independently randomly generated as

Ujs+ Uj?e+ bj

where s and e uniformly chosen in [�1, 1]r and

h
�
q

r
d�r ",

q
r

d�r "
id�r

respectively. Let Cj be the set of

points in the j-th cluster and Co be the set of data points not in clusters, namely, it is a set of outliers. We

suppose that number of outliers is no where every xo 2 Co and x /2 Co satisfies kxo � xk2 > 2
p
r(1 + "2)

for all j. Also we assume that there exists do such that do � kxok2 for all xo 2 Co. Suppose that
n�no
m is

asymptotically large number and d� r. Let bCj be the set of points in the j-th cluster which is found by

SC-IN. Then when d!1 and bN/d! � 2 (0, 1), if we choose Rc = 2
p

r(1 + "2) for SC-IN algorithm,

bC1, . . . , bCm and C1, . . . , Cm are isomorphic with probability at least

n� no

n

m�1Y

j=1

(m� j)(↵2)�

j(↵1)� + (m� j)(↵2)� + m
n�no

nod
�
o

where ⇣ = 2"
q

r
d�r

p
bN+

p
d�rp

bN�
p
r

, ↵1 = ⇣
p
r + "

p
r and ↵2 =

p
|1� ⇣2|

⇣
4
p

r(1 + "2)�
p
r
⌘
.

The proof of Theorem 2 is presented in Section 4.2. Theorem 2 guarantees the performance of our

initialization method. Approximately, ↵1, ↵2 and do indicate how noise, signal and outliers are strong

respectively. According to Theorem 2, smaller " and do, in other words less noise and outliers, makes

the lower bound more tighter. One interesting observation is when ↵2 is larger than ↵1 and do, larger

� enhance overall performance. However, if ↵2 is smaller than others, then proper small � enhance

robustness of the initialization method. In the real world, a power of noises is much smaller than a power

of signals while a power of outliers is much larger than a power of signals in many cases. Therefore, one

can use large � when there only exists noise and small � when there exists any outliers.

Moreover, assume that no = 0 and " = 0 which deduce ⇣ = 0, ↵1 = 0, ↵2 = 3
p
r and do = 0. This

observation means the lower bound of Theorem 2 becomes 1 which means we always can recover true

clustering by using SC-IN and so that SC-SI recovers true clustering. However, even if under the same

condition, random initialization cannot guarantee true clustering for every initialization. For example, if

we choose b1, . . . , bm in the same cluster, with high probability, SC-SI cannot recover true clustering.

– 8 –

Chapter 4. Proofs of Theorems

4.1 Proof of Theorem 1

4.1.1 Proof of the monotone convergence of SC-SI

In this subsection, we show that the SC-SI algorithm monotonically decreases the objective (2.2).

As we discuss in Chapter 3.1, it is clear that wij and bj are updated to decreases the objective (3.1). On

the other hand, it is not clear that Uj is updated to decrease the objective in (3.1) since the algorithm

runs only a few iterations of the subspace-iteration method instead of SVD. To address this issue, we

first state the following key lemmas whose proofs are given in Section 4.1.3.

Lemma 3. Consider the following subspace-iteration for a positive semi-definite matrix A 2 Rd⇥d

UA(1) Orthonomalization of AU(0) by QR decomposition,

where U(0) 2 Rd⇥d
is an orthogonal matrix. Then, for any r  d, it follows that

rX

i=1

U(0)>i AU(0)i 
rX

i=1

UA(1)i
>AUA(1)i,

where U(0)i, UA(1)i denote the i-th column vectors of U(0), UA(1), respectively.

Lemma 4. For any x, y � 0 and ↵ 2 (0, 2],

x↵ � ↵x2

2y2�↵
 y↵ � ↵y2

2y2�↵
.

Now we are ready to complete the monotone decreasing property of SC-SI. Let W,D,B,U and
cW, bD, bB, bU be the current and updated (after one iteration) values of SC-SI. From Lemma 3 for positive

semi-definite matrix XHjH>
j X>, it follows that

X

j

tr(bU>
j XHjH

>
j X> bUj) �

X

j

tr(U>
j XHjH

>
j X>Uj).

Combining the above inequality and the optimality of bB leads to

nX

i=1

mX

j=1

wijdijk(I � bUj
bU>
j)(xi �bbj)k22 

nX

i=1

mX

j=1

wijdijk(I � UjU
>
j)(xi � bj)k22. (4.1)

By using the definition of dij , (4.1) reduces to

nX

i=1

mX

j=1

wij

↵k(I � bUj
bU>
j)(xi �bbj)k22

2k(I � UjU>
j)(xi � bj)k(2�↵)

2


nX

i=1

mX

j=1

wij

↵k(I � UjU>
j)(xi � bj)k22

2k(I � UjU>
j)(xi � bj)k(2�↵)

2

. (4.2)

We further use Lemma 4 to obtain

nX

i=1

mX

j=1

"
wijk(I � bUj

bU>
j)(xi �bbj)k↵2 � wij

↵k(I � bUj
bU>
j)(xi �bbj)k22

2 k(I � UjU>
j)(xi � bj)k2�↵

2

#


nX

i=1

mX

j=1

"
wijk(I � UjU

>
j)(xi � bj)k↵2 � wij

↵k(I � UjU>
j)(xi � bj)k22

2 k(I � UjU>
j)(xi � bj)k2�↵

2

#
.

(4.3)

– 9 –

Finally, from (4.2), (4.3) and the updating rule of wij , we have

nX

i=1

mX

j=1

bwijk(I � bUj
bU>
j)(xi �bbj)k↵2 

nX

i=1

mX

j=1

wijk(I � UjU
>
j)(xi � bj)k↵2 .

This completes the proof of the monotone decreasing property of SC-SI.

4.1.2 Proof of the convergence of SC-SI to a local optimum

The previous subsection guarantees the convergence of SC-SI. In this subsection, we show that the

SC-SI algorithm converges to a local optimum of (2.2), i.e., the convergence point satisfies the KKT

condition of (2.2).

First, the Lagrangian function of (2.2) is the following

L1([wij], [bj], [Uj], [⇤j], [�j], [µij])

=
nX

i=1

mX

j=1

wijk(I � UjU
>
j)(xi � bj)k↵2 �

mX

j=1

tr
�
(U>

j Uj � I)⇤j

�

�
nX

i=1

�
�i

mX

j=1

(wij � 1)
�
�

nX

i=1

mX

j=1

µijwij(wij � 1),

where ⇤,� and µ is Lagrange multipliers. Taking derivative with respect to wij , Uj and bj respectively

and setting them to zero, one can obtain the KKT condition of (2.2) as the follows

@L1

@wi0j0
= k(I � Uj0U

>
j0)(xi0 � bj0)k↵2 � �i0 � µi0j0 = 0

@L1

@Uj0
=

nX

i=1

↵ wij0
(I � Uj0U>

j0)(xi � bj0)(bj0 � xi)>Uj0

k(I � Uj0U>
j0)(xi � bj0)k2�↵

2

� Uj0⇤j0 = 0

@L1

@bj0
=

nX

i=1

↵ wij0
(I � Uj0U>

j0)(bj0 � xi)

k(I � Uj0U>
j0)(xi � bj0)k2�↵

2

= 0

On the other hand, the Lagrangian function of (3.1) is the following

L2([wij], [bj], [Uj], [⇤j], [�j], [µij])

=
nX

i=1

mX

j=1

dijwijk(I � UjU
>
j)(xi � bj)k22 �

mX

j=1

tr
�
(U>

j Uj � I)⇤j

�

�
nX

i=1

�
�i

mX

j=1

(wij � 1)
�
�

nX

i=1

mX

j=1

µijwij(wij � 1).

Again, taking derivative with respect to wij , Uj and bj respectively and setting them to zero, one can

obtain the KKT condition of (3.1)

@L2

@wi0j0
= di0j0k(I � Uj0U

>
j0)(xi0 � bj0)k22 � �i0 � µi0j0 = 0

@L2

@Uj0
=

nX

i=1

2dij0wij0(I � Uj0U
>
j0)(xi � bj0)(bj0 � xi)

>Uj0 � Uj0⇤j0 = 0

@L2

@bj0
=

nX

i=1

2dij0wij0(I � Uj0U
>
j0)(bj0 � xi) = 0

By substitute definition of dij = ↵
2 k

�
I � UjU>

j

�
(xi � bj) k(↵�2)

2 into the above conditions (since the

algorithm converges), the above equations are equivalent to the KKT condition of (2.2). This concludes

that the SC-SI algorithm converges to a local minimum of (2.2).

– 10 –

4.1.3 Proofs of Lemma 3 and Lemma 4

Proof of Lemma 3. To begin with, the subspace-iteration can be summarized as follows

UA(1)RA = AU(0),

where RA is an upper triangular matrix, namely, it is a QR decomposition of AU(0). Since A is

positive semi-definite, there exists a unique positive semi-definite square-root matrix B 2 Rd⇥d, or

simply, A = B2. Let us define UB(0) = U(0) and consider the two steps of subspace-iterations for B

UB(1)RB(1) = BUB(0), UB(2)RB(2) = BUB(1),

which implies that UB(2)RB(2)RB(1) = AU(0). Hence, without loss of generality, one can conclude that

UB(2) = UA(1). (4.4)

Furthermore, let us define B(k) := UB(k)>BUB(k), QB(k + 1) := UB(k)>UB(k + 1) and observe that

B(0) = UB(0)
>BUB(0) = UB(0)

>UB(1)RB(1) = QB(1)RB(1),

B(1) = UB(1)
>BUB(1) = QB(1)

>UB(0)
>BUB(0)QB(1) = QB(1)

>B(0)QB(1) = RB(1)QB(1).

Therefore, since B(0), B(1) are positive semi-definite, we have

B(0)2 = RB(1)
>RB(1), B(1)2 = RB(1)RB(1)

>.

Now we let sub[M] be the r-th principal submatrix of a matrix M 2 Rd⇥d which is obtained from M by

removing the (r + 1)-th to d-th rows and columns. Then, observe that

tr
�
sub

⇥
B(k)2

⇤�
= tr

�
sub

⇥
UB(k)

>B2UB(k)
⇤�

=
rX

i=1

UB(k)
>
i B

2 UB(k)i =
rX

i=1

UB(k)
>AUB(k)i, (4.5)

Since R(1) is an upper triangular matrix, it follows that

tr(sub
⇥
B(1)2

⇤
)� tr(sub

⇥
B(0)2

⇤
) = tr(sub

⇥
R(1)R(1)>

⇤
)� tr(sub

⇥
R(1)>R(1)

⇤
)

=
rX

i=1

dX

j=i

(R(1))2ij �
rX

i=1

rX

j=i

(R(1))2ij =
rX

i=1

(
dX

j=i

(R(1))2ij �
rX

i=1

(R(1))2ij) =
rX

i=1

dX

j=r+1

(R(1))2ij � 0,
(4.6)

where (M)ij is the (i, j)-th element of a matrix M . Similarly, one can show that

tr(sub
⇥
B(2)2

⇤
)� tr(sub

⇥
B(1)2

⇤
) � 0. (4.7)

Combining (4.4), (4.5), (4.6) and (4.7) leads to the conclusion of Lemma 3.

Proof of Lemma 4. To begin with, let us define f(x, y,↵) as the following

f(x, y,↵) := x2 � 2

↵
x↵y2�↵ +

✓
2

↵
� 1

◆
y2.

We will prove that f(x, y,↵) � 0 is satisfied for 8x, y � 0 and 8↵ 2 (0, 2] and that leads to the proof of

the lemma. Taking derivative f(x, y,↵) w.r.t. ↵, we obtain

@f(x, y,↵)

@↵
=

2y2

↵2

✓
x

y

◆↵✓
1 + ln

✓
y

x

◆↵◆
� 1

�
.

– 11 –

Let z :=
� y
x

�↵
, C := 2y2

↵2 and substitute z, C into the above equation then we obtain

@f(x, y,↵)

@↵
=

C

z
(1 + ln z � z) .

Since C/z � 0 for 8x, y,↵ � 0 and 1 + ln z � z  0 for 8z � 0, @f(x,y,↵)
@↵  0 for 8x, y,↵ � 0.

Therefore f(x, y,↵) is decreasing function on ↵ and it is easy to show that f(x, y,↵) = 0 when ↵ = 2.

Thus f(x, y,↵) � 0 for ↵ 2 (0, 2].

4.2 Proof of Theorem 2

4.2.1 Proof of performance guarantee of SC-IN

In this section, we show that SC-IN guarantees successful clustering provably under a statis-

tical assumption on data points. We first state the following key lemmas whose proof is given in

Section 4.2.2. For Lemma 5 and 6, we define ⇣ = 2"
q

r
d�r

p
bN+

p
d�rp

bN�
p
r

, ↵1 = ⇣
p
r + "

p
r and ↵2 =

p
|1� ⇣2|

⇣
4
p
r(1 + "2)�

p
r
⌘
.

Lemma 5. Under the same setting of Theorem 2, Let bbj be a point of cluster j whose optimal center

vector is bj and optimal subspace is Uj. Suppose we run Step 2 to 4 of SC-IN while fixing bbj. Also

suppose that we choose Rc = 2
p
r(1 + "2), bN > 0 and � > 0. Let bUj and bbj be outputs of the algorithm.

Then when d!1 and bN/d! � 2 (0, 1), following inequality is satisfied.

kU>
j
bUj?k2  ⇣.

Lemma 5 shows that ‘distance’ between an optimal subspace Uj and a reconstructed subspace bUj

by SC-IN is upper bounded in terms of SNR ", number of sampled data bN , dimension of the data d

and dimension of subspaces r.

Lemma 6. Under the same setting of Lemma 5, following inequalities hold for all j and ` 6= j.

k(I � bUj
bU>
j)(xij �bbj)k2  ↵1,

k(I � bUj
bU>
j)(xi` �bbj)k2 � ↵2.

The first inequality of Lemma 6 shows that any data point in same cluster with current center vector

has distance less or equal than ↵1, while the second inequality shows that any data point in di↵erent

cluster with current center vector has distance greater or equal than ↵2. Therefore, by using Lemma

6, we can calculate the probability to choose the next center vector in di↵erent clusters which do not

include already chosen center vectors.

Now we are ready to complete proof of Theorem 2. Suppose we randomly choose first center vector

b1 from not in Co which happens with probability (n � no)/n Without loss of generality, let’s say b1 is

chosen from cluster 1.

Then a data point x is chosen as b2 by the probability of fD(x,�)P
i fD(xi,�)

. If x is in the same cluster

with b1, then fD(x,�) is upper bounded by the first inequality of Lemma 6. Also, if x is in the di↵erent

cluster with b1, then fD(x,�) is bounded by the second inequality of the same Lemma. Finally, by the

condition of Theorem 2, fD(xio,�)  d�o for all xio in Co.
Using these observations, we have the lower bound of probability to choose next center vector b2

from another cluster as the following

– 12 –

Prob(b2 from cluster not 1) =

P
` 6=1

Pn�no
m

i=1 fD(xi`,�)
Pn�no

m
i=1 fD(xi1,�) +

P
` 6=1

Pn�no
m

i=1 fD(xi`,�) +
Pno

i=1 fD(xio,�)

�
(m� 1)n�no

m (↵2)�

n�no
m (↵1)� + (m� 1) (n�no)

m (↵2)� + nod
�
o

.

Here, we emphasize that even in denominator term, lower bound of the probability to choose b2 in

the di↵erent cluster with b1. It is because, the following function is a decreasing function on a

a

a+ b
= 1� b

a+ b
.

Therefore, the following inequality is satisfied:

a

a+ b
� min a

min a+min b
.

Suppose we choose all j number of center vectors in di↵erent clusters but not in outliers. Once b`

is chosen from C`, fD(xi`,�)  ↵�
1 while fD(x,�) � ↵�

2 for x in unchosen clusters. Therefore, the lower

bound of probability to choose bj+1 from one of (m� j) clusters which are not chosen before is given by

Prob(bj+1 from cluster not 1, . . . , j)

=

Pm
`=j

Pn�no
m

i=1 fD(xi`,�)
Pj�1

`=1

Pn�no
m

i=1 fD(xi`,�) +
Pm

`=j

Pn�no
m

i=1 fD(xi`,�) +
Pno

i=1 fD(xio,�)

�
(m� j)n�no

m (↵2)�

j n�no
m (↵1)� + (m� j) (n�no)

m (↵2)� + nod
�
o

.

By the mathematical Induction, the lower bound of probability to choose center vectors in di↵erent

clusters is given by

n� no

n

m�1Y

j=1

(m� j)n�no
m (↵2)�

j n�no
m (↵1)� + (m� j)n�no

m (↵2)� + nod
�
o

This completes the proof of Theorem 2.

4.2.2 Proofs of Lemma 5 and Lemma 6

Proof of Lemma 5. To begin with, we first show that any data point x not in outliers, all data points

whose distance between x is less than 2
p
r(1 + "2) are all in same cluster.

For cluster j, each i-th point xij is independently randomly generated as xij = Ujsij + Uj?"ij + bj

where s and e uniformly chosen in [�1, 1]r and
h
�
q

r
d�r ",

q
r

d�r "
id�r

respectively. Therefore, for all j,

Euclidean distance between xij and bj is always less or equal than
p
r(1 + "2) while minimum distance

between bj and b` for all ` 6= j is 4
p
r(1 + "2). Therefore, the minimum distance between data points in

di↵erent cluster is larger than 2
p
r(1 + "2). In addition to, since we assume that kxo�xk2 > 2

p
r(1 + "2)

for all j, xo 2 Co and x /2 Co, if we assume that the center vector bbj is chosen not in outliers, the set of

data points whose distance between bbj is less than 2
p

r(1 + "2) is exactly same as Cj . In the algorithm,
bXj is generated by uniformly randomly choosing bN number of data points from Cj . From the observation,
bXj can be represented as the following.

bXj = Uj
bSj + Uj? bEj + bj1

>,

– 13 –

where each column vector of bSj 2 Rr⇥ bN and bEj 2 R(d�r)⇥ bN are in [�1, 1]r and
h
�
q

r
d�r ",

q
r

d�r "
id�r

respectively.

Let’s run Step 3 of the algorithm. Then now bbj is updated as the mean of bXj , or bbj = 1
bNj

bXj1. Let

bYj = bXj �bbj1>. Then by the optimality of bUj , we have

k
�
I � bUj

bU>
j

�bYjk2  k
�
I � UjU

>
j

�bYjk2. (4.8)

Also, by triangular inequality property of norm, we have

kUjU
>
j
bYj � bUj

bU>
j
bYjk2 � kUjU

>
j
bYj � bYjk2  kbYj � bUj

bU>
j
bYjk2. (4.9)

Combining (4.8) and (4.9), it follows that

kUjU
>
j
bYj � bUj

bU>
j
bYjk2  2k

�
I � UjU

>
j

�bYjk2 = 2kUj?U
>
j?

bYjk2 = 2�1

�
U>
j?

bYj

�
. (4.10)

Since U>
j?

bYj is a r ⇥ r matrix and bU>
j?

bUj
bU>
j
bYj = 0,

kbU>
j?Ujk2�r(U

>
j
bYj)  kbU>

j?UjU
>
j
bYjk2

= kbU>
j?UjU

>
j
bYj � bU>

j?
bUj

bU>
j
bYjk2

 kbU>
j?k2kUjU

>
j
bYj � bUj

bU>
j
bYjk2

= kUjU
>
j
bYj � bUj

bU>
j
bYjk2

From the above inequality and (4.10), we have

kU>
j
bUj?k2 

kUjU>
j
bYj � bUj

bU>
j
bYjk

�r

�
U>
j
bYj

�  2
�1

�
U>
j?

bYj

�

�r(U>
j
bYj)

. (4.11)

From the definition of bYj , we have

U>
j
bYj = U>

j

�
UjSj + Uj?Ej + (bj �bbj)1>� = Sj + U>

j (bj �bbj)1>

U>
j?

bYj = U>
j?

�
UjSj + Uj?Ej + (bj �bbj)1>� = Ej + U>

j?(bj �bbj)1>.
(4.12)

Since each data point of bXj is generated independently and identically distributed, bYj is a d ⇥ bN
random matrix whose entries are independent and identically distributed. Note that if we do not choose
bN as n�no

m , entries of bYj is not independent because in SC-IN algorithm, we choose bXj by distance from

bj not uniformly random in cluster j. Therefore, we can find upper bound and lower bound of singular

value of bYj by using random matrix theory.

From Theorem 2 in [26], the smallest and largest singular value of a random matrix A 2 RN⇥n

whose entries are i.i.d. subgaussian random variable with zero mean and unit variance can be easily

deduced by

�1(A)!
p
N +

p
n,�n(A)!

p
N �

p
n, as n!1 and n/N ! � 2 (0, 1). (4.13)

In addition, by Cherno↵ Bound we can bound kbj � bbjk2 as the following. Let’s define bs(k)ij , be(k)ij as

i-th entry of k-th element of bEj and bSj respectively. Then we have

bbj = bj +
1
bN

bNX

k=1

(Ujbs(k)ij + Uj?be(k)ij).

– 14 –

Let bij and bbij be i-th entry of bj and bbj respectively. Since bs(k)ij , be(k)ij are random variable, bbij is also

random variable whose mean is bij . By applying Cherno↵ Bound to bbij , we have

P
h
|bbij � bij | > �bij

i
> 1� exp(�5

6
�2bij).

Let � = 1
bN
, then we have

P

|bbij � bij | >

bij
bN

�
> 1� exp(�5

6

bij
bN2

).

Therefore as bN !1, |bbij � bij | goes to 0. Then kbbj � bjk1 = maxi |bbij � bij | goes to 0. Since `2 norm

is always smaller than `1 norm, we have

kbj �bbjk2  kbj �bbjk1 = max
i

|bbij � bij |! 0, as bN !1.

From the above inequality, we have

k(bj �bbj)1>k2  kbj �bbjk2 · k1>k2 ! 0, as bN !1. (4.14)

From (4.12), (4.13) and (4.14), when d!1 and bN/d! � 2 (0, 1) we have

�1

⇣
U>
j?

bYj

⌘


r
r

d� r
"
⇣p

bN +
p
d� r

⌘
+ �1

⇣
(bj �bbj)1>

⌘
'

r
r

d� r
"
⇣p

bN +
p
d� r

⌘

�r

⇣
U>
j
bYj

⌘
� �r (Sj)� �1

⇣
(bj �bbj)1>

⌘
' �r (Sj) �

p
bN �
p
r.

(4.15)

In the first inequality,
q

r
d�r " is multiplied because from (4.12), we have U>

j?
bYj ' Ej where entries

of Ej are in
h
�
q

r
d�r ",

q
r

d�r "
i
while (4.13) is for matrix whose entries are in [�1, 1].

By combining (4.11) and (4.15), the proof is completed.

Proof of Lemma 6. To begin with, we prove the first inequality. Let xij = Ujsij + Uj?eij + bj , then

by the triangular inequality and Cherno↵ Bound (4.14) what we proved in Lemma 5, we have

k(I � bUj
bU>
j)(xij �bbj)k2 = kbUj? bU>

j?(xij �bbj)k2 = kbU>
j?(xij �bbj)k2

= kbU>
j?(Ujsij + Uj?eij + bj �bbj)k2

 kbU>
j?Ujsijk2 + kbU>

j?Uj?eijk2 + kbU>
j?(bj �bbj)k2

' kbU>
j?Ujsijk2 + kbU>

j?Uj?eijk2

Since eij is uniformly chosen in
h
�
q

r
d�r ",

q
r

d�r "
id�r

, we have

kbU>
j Uj?eijk2  keijk2  "

p
r.

Also from the property of norm and sij is uniformly chosen in [�1, 1]r, we have

kbU>
j?Ujsijk2  kbU>

j?Ujk2ksijk2  kbU>
j?Ujk2

p
r.

From the above inequalities and by Lemma 5, we can prove the first inequality.

kbU>
j?Ujsijk2 + kbU>

j?Uj?eijk2  kbU>
j?Ujk2

p
r + "

p
r  ⇣

p
r + "

p
r.

Now we prove the last inequality for the Lemma. By the property of norm, Cherno↵ Bound (4.14) and

kbU>
j Uj?eijk2  "

p
r, we have

– 15 –

k(I � bUj
bU>
j)(xi` �bbj)k2 = kbU>

j?(xi` �bbj)k2
= kbU>

j?(U`si` + U`?ei` + b` �bbj)k2
� kbU>

j?(U`si` + b` �bbj)k2 � kbU>
j?U`?ei`k2

� kbU>
j?(U`si` + b` �bbj)k2 � "

p
r

= kbU>
j?(U`si` + b` � bj + (bj �bbj))k2 � "

p
r

' kbU>
j?(U`si` + b` � bj)k2 � "

p
r

kbU>
j?(U`si` + b` � bj)k2 denotes size of projection of U`si` + b` � bj to the subspace bUj?. Also the

minimum singular value of bU>
j?U` denotes the minimum value of projection of unit vector spanned by

U` to the subspace bU>
j?. Therefore the lower bound of this projection can be computed by

kbU>
j?(U`si` + b` � bj)k2 � �r(bU>

j U`)kU`si` + b` � bjk2.

From the condition of Theorem 2, lower bound of kU`si` + b` � bjk2 is given by

kU`si` + b` � bjk2 � kbj � b`k2 � kU`si`k2 � 4
p

r(1 + "2)�
p
r.

By the condition that Uj , U` are independent subspaces with rank r and by the definition of Uj?,

�r(bU>
j?U`) � �d�r(bU>

j?Uj?).

Therefore, we have

kbU>
j?(U`si` + b` � bj)k2 � �d�r(bU>

j?Uj?)
⇣
4
p

r(1 + "2)�
p
r
⌘
.

�d�r(bU>
j?Uj?) denotes the minimum value of projection of unit vector uj? spanned by Uj? to the

subspace bUj?. Let pj be the projected vector of uj? to the subspace Uj? and bpj be projected vector of

uj? to the subspace bUj?. Then because UjU>
j + Uj?U>

j? = I, kpjk22 + kbpjk22 = 1. Note that by Lemma

5, the upper bound of kbpjk2 is given by ⇣ while the lower bound of kpjk2 is �d�r(bU>
j?Uj?). Therefore

we have,

�d�r(bU>
j?Uj?) �

p
|1� ⇣2|.

Therefore,

k(I � bUj
bU>
j)(xi` �bbj)k2 � �d�r(bU>

j?Uj?)
⇣
4
p

r(1 + "2)�
p
r
⌘
�

p
|1� ⇣2|

⇣
4
p
r(1 + "2)�

p
r
⌘
.

– 16 –

Chapter 5. Experimental Results

5.1 Experiment setup

In this chapter, we report experimental results for the SC-SI algorithm to verify how our algorithm

is e�cient and accurate than naive EM-style algorithm and other popular subspace clustering algorithms.

This chapter consists of two sections.

In the first section, we will show that how our proposed initialization method, SC-IN, a↵ects

objective value convergence and clustering performance of our algorithm SC-SI and the naive EM

algorithm SC-EM mentioned in Chapter 2 on MNIST handwritten digit dataset. Also, we will report

relationship between value of ↵,� and robustness to noise and outliers of SC-SI algorithm.

In the last section, we will compare SC-SI and other clustering algorithms including median k-flat

algorithm (MKF) [25], local best-fit flats (LBF), spectral LBF (SLBF), their heuristic versions (LBF-

MS, SLBF-MS) [27], sparse subspace clustering (SSC) [28], low rank subspace clustering (LRSC), [29],

Structured Subspace Clustering [30] and robust subspace clustering (RSC) [31] on MNIST handwritten

digit dataset.

Performance Measure: Evaluating performance of clustering result for labeled data is not trivial.

One of naive approach to measure performance of an algorithm is using classification error by matching

original class and each cluster appropriately. However, since matching cluster and class becomes more

di�cult when number of cluster is large, this kind of approach cannot measure clustering performance

exactly when number of cluster goes large.

To alleviate the issue, we consider the following clustering error which is based on binary classification

error. Define a binary variable eij = 1clusteri=clusterj . In other words, eij is 1 if data points i and j are

in same cluster, and 0 otherwise. Therefore, we can consider true positive and false positive of eij . True

positive occurs when i, j are in the same cluster both in fact and in the result of a cluster algorithm,

Similarly, false positive, true negative and false negative can be also argued.

We use Jaccard index measure of how well a binary classification test correctly works, or simply, it

measures the performance of a clustering algorithm. Let TP, TN,FP and FN be the number of true

positives, true negatives, false positives and false negatives respectively. Then, the Jarccard index (JI)

are defined as the following.

JI =
TP

TP + FP + FN
.

The Jarccard index has value between 0 and 1 and higher score means better clustering performance.

Obviously, we expect to achieve better performance than random label assignment. In standard classifi-

cation problem, performance of the random clustering is 1
m if all class has equal number of data points.

However, in our setting, Jaccard index of random clustering archives

JI(random clustering) =
1
m

m�1
m + m�1

m + 1
m

=
1

2m� 1
,

where m is the number of clusters. For example, if m = 10, then baseline performance of clustering

algorithms is about 0.05.

– 17 –

Note that our evaluation method should compare every n2 pairs to compute exact performance

measure where n is number of total data points from data set X. However, if n goes large, O(n2)

complexity is too painful to evaluation method. To reduce the computation complexity of evaluation

method, we uniformly sample ns number of data points from the data set X and compute JI only using

n2
s pairs for evaluation. We sample 10% of data points for performance measure to MNIST dataset.

Detailed setting for SC-SI: In all experiments below, we choose k = 1 for SC-SI, which means

we only run a single iteration of the subspace iteration in Step 2 of SC-SI algorithm. The dimension

of low rank spaces r and � for SC-IN is determined by cross validation. We specify detailed value of

hyper-parameters for every dataset.

As we mentioned in Chapter 3.2, in the practice, it is di�cult to choose appropriate Rc in Step 2

of SC-IN. Instead of choosing bXj using Rc, we choose bN number of data points from Nc number of

nearest neighbors of each bj . However, we again emphasize that this modified method cannot guarantee

true clustering such as Theorem 2 because this breaks uniform randomness of bXj .

If detailed values of bN and Nc are not specified, we choose Nc = n/m2 and bN = 0.9⇥Nc.

5.2 Convergence and Robustness of SC-SI

Convergence comparison between SC-SI and SC-EM: We show objective value and clustering

performance for each iteration of SC-SI and SC-EM on MNIST dataset whose dimension is 784 and the

number of data points is 60,000. We set ↵ = 1, � = 10, r = 20, bN = 600, Nc = 1000 for the experiment.

We repeat 10 times for each algorithms and report their averages. The result is reported in Figure 5.1.

As reported in Figure 5.1, SC-SI initialized by SC-IN is the fastest among other algorithms. When

randomly initialized, EM algorithm seems converged much faster than SC-SI. However if algorithms

initialized by SC-IN, SC-SI converges faster than SC-EM.

Required time per iterations comparison between SC-SI and SC-EM: We observe how re-

quired time per each iteration of SC-SI and SC-EM changes among the total number of data n, the

dimension of data d and subspace r when ↵ = 1. We generate uniformly random data whose each entry

uniformly chosen in [�1, 1]. We run 10 iterations for each random dataset with random initialization.

For each setting, we repeated our experiment 10 times. i.e., in Figure 5.2 each point is the average of 100

iterations. Since the computation complexity of algorithm is a↵ected by n, d and r jointly, we observe

the relationship between each variable and the runtime of algorithms while fixing other variables. The

detailed setting of each experiment is described in Figure 5.2.

The result shows that, each iteration of SC-SI is much more faster than SC-EM. Moreover, com-

putation complexity of SC-EM seems super-linear on dimension d and r. It is because complexity of

the SVD computation, the major bottleneck of the EM algorithm, is O(nd2) when n > d while SC-SI

theoretically and practically requires only linear computation complexity.

Robustness of SC-SI among various ↵,�: We show the clustering performance of SC-SI with

various ↵ and � to noisy MNIST dataset. We add the addictive white Gaussian noise (AWGN) to given

dataset. Magnitude of noise is specified by SNR in dB scale. If SNR = 0dB, powers of noise and signal

are same. Note that larger SNR means less noise.

– 18 –

5

5.5

6

6.5

7

0 20 40 60 80 100

O
bj

ec
tiv

e
va

lu
e

x
10

 7

Iterations

SC-SI (SC-IN)
SC-SI (R-IN)
SC-EM (SC-IN)
SC-EM (R-IN)

(a)

0

0.1

0.2

0.3

0.4

0.5

0 20 40 60 80 100

C
lu

st
er

in
g

Pe
rf

or
m

an
ce

Iterations

SC-SI (SC-IN)
SC-SI (R-IN)
SC-EM (SC-IN)
SC-EM (R-IN)

(b)

Figure 5.1: Performance comparisons in (a) convergence and (b) clustering performance measured by

Jaccard Index between SC-SI and SC-EM. SC-IN and R-IN denotes di↵erent initializations, first one

is SC-IN in Section 3.2, and a purely random one, respectively.

0

3

6

9

12

15

0 5000 10000

Ti
m

e
(s

ec
)

Number of data points

SC-EM
SC-SI

0

3

6

9

12

15

0 500 1000

Dimension of data points

SC-EM
SC-SI

0

200

400

600

800

1000

0 200 400

Dimension of subspaces

SC-EM
SC-SI

(a) (b) (c)

Ti
m

e
(s

ec
)

Ti
m

e
(s

ec
)

Figure 5.2: Required running time per each iteration comparison between SC-SI and SC-EM. (a)

running time and n while d = 1, 000 and r = 10, (b) running time and d while n = 10, 000 and r = 10,

(c) running time and r while n = 10, 000 and d = 1, 000. In (a), (b), (c) each point is obtained from

averaging over 10 iterations for di↵erent 10 randomly generated samples.

0.2

0.21

0.22

0.23

0.24

0.25

0 10 20 30

C
lu

st
er

in
g

Pe
rf

or
m

an
ce

SNR (db)

ȕ=1
ȕ=∞

(a) (b) (c)

0.1

0.15

0.2

0.25

0 10 20 30

C
lu

st
er

in
g

Pe
rf

or
m

an
ce

SNR (db)

Į=1
Į=2

0.1

0.15

0.2

0.25

0 10 20 30

C
lu

st
er

in
g

Pe
rf

or
m

an
ce

SNR (db)

Į=1
Į=2

∞ ∞ ∞

Figure 5.3: Performance comparison of SC-SI among di↵erent ↵, � and SNR (Signal-to-Noise) ratio in

dB. (a) ↵ = 1, 2 for � = 0, i.e., it is random initialization (b) ↵ = 1, 2 for � = 1 (c) � = 1,1 for ↵ = 1.

For the experiment, we uniformly randomly sample 5% of data from MNIST training dataset to

reduce entire runtime. We set bN = 30, Nc = 50 for the experiment. The result is reported in Figure 5.3.

The result shows that regardless of initialization, smaller ↵ is much robust. Moreover, SC-IN is

more robust than random initialization while smaller � makes SC-IN is more robust.

However in some cases, especially number of data points is small and data have little noise, larger

↵ and � may perform much better than smaller one. We will discuss this issue later.

– 19 –

5.3 Performance comparison between SC-SI and other algo-

rithms

We also compare the clustering accuracy of SC-SI with those of other spectral subspace clustering

algorithms including MKF [25], LBF, SLBF, their heuristic versions (LBF-MS, SLBF-MS) [27], SSC [28],

LRSC, [29], Structured Subspace Clustering [30], and RSC [31] for MNIST dataset.

To observe robustness of each algorithm, we add AWGN to the dataset with dB scale. Also we add

random outliers whose each entry is uniformly randomly chosen from [0, 255]. Since spectral methods

require to build a huge a�nity matrix whose size is the number of data points by the number of data

points, we didn’t try spectral algorithms for entire MNIST training dataset which require 3.6 billion

entries to a�nity matrix (If each entry is 4 byte float data type, we require more than 130GB memory

for a�nity matrix). Instead of running algorithm to entire dataset, we randomly sample 5% of data and

run algorithms.

As we mentioned in Section 3.2, Theorem 2 shows that we need smaller � when we have outliers.

To enhance robustness to outliers, we set ↵ = 1 and � = 1 when we add outliers to data points while

we set � = 10 for non-outliers setting. For all algorithms, we choose a dimension of subspace r as 20.

Also for sampled dataset, to enhance performance of our algorithm, we repeatedly run SC-SI 3 times

and choose one which has the minimum converged objective value. The repeated result is reported as

SC-SI (repeated) in Table 5.2. The overall experimental results are reported in Table 5.1 and 5.2 For

iterative algorithms, we repeat algorithms 10 times for each data settings. Also when we sample data,

we repeatedly sample data 10 times and run algorithms. Therefore, in Table 5.2, each result of iterative

algorithms are average of 100 times experiments. In Table 5.1 and 5.2, we denote nm = n/m, i.e., the

number of data points in each cluster. The results shows that (a) SC-SI outperforms other iterative

algorithms in accuracy but require more times to converge (b) SC-SI is significantly faster than other

spectral algorithms while archive much better accuracy.

– 20 –

Table 5.1: Performance comparisons in the average clustering performance (measured by Jaccard index)

for the entire MNIST training data.

Algorithm Baseline
SNR (dB) Outliers/nm

20 10 5 1 0 50% 100% 150% 200%

SC-SI 0.42 0.42 0.40 0.43 0.38 0.43 0.43 0.34 0.36 0.32

K-means 0.13 0.13 0.11 0.09 0.09 0.09 0.13 0.13 0.13 0.12

MKF 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10

LBF 0.21 0.20 0.24 0.26 0.26 0.25 0.20 0.20 0.20 0.21

LBF-MS 0.21 0.19 0.21 0.21 0.19 0.19 0.20 0.19 0.19 0.19

Structured SC 0.30 0.29 0.22 0.15 0.11 0.09 0.29 0.29 0.28 0.29

Table 5.2: Performance comparisons in the average clustering performance (measured by Jaccard index)

for the 5% sampled MNIST training data.

Algorithm Baseline
SNR (dB) Outliers/nm

20 10 5 1 0 50% 100% 150% 200%

SC-SI 0.32 0.31 0.32 0.30 0.28 0.30 0.29 0.28 0.29 0.28

SC-SI (Repeated) 0.37 0.34 0.34 0.33 0.32 0.32 0.32 0.31 0.31 0.31

K-means 0.14 0.14 0.11 0.09 0.09 0.09 0.14 0.13 0.13 0.13

MKF 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10

LBF 0.28 0.27 0.31 0.29 0.27 0.24 0.27 0.29 0.27 0.25

LBF-MS 0.23 0.24 0.30 0.28 0.27 0.26 0.24 0.24 0.22 0.22

Structured SC 0.31 0.28 0.22 0.16 0.11 0.09 0.28 0.27 0.28 0.27

SLBF 0.31 0.31 0.30 0.26 0.22 0.20 0.28 0.28 0.25 0.26

SLBF-MS 0.26 0.29 0.28 0.24 0.21 0.20 0.27 0.27 0.25 0.25

SSC 0.23 0.23 0.24 0.23 0.24 0.23 0.23 0.23 0.23 0.22

LRSC 0.30 0.25 0.18 0.12 0.08 0.07 0.26 0.26 0.27 0.25

RSC 0.20 0.29 0.20 0.21 0.22 0.21 0.20 0.19 0.23 0.23

– 21 –

Chapter 6. Conclusion

Various methods have addresses to enhance the robustness of dimensionality reduction techniques.

However, they are very computationally expensive compared to non-robust ones. In this paper, we

design and analyze an e�cient iterative SC algorithm and its initialization method.The algorithm is

desinged via optimizing a sum of the ↵-th power of `2-norm objective with 0 < ↵  2, where it is

particularly attractive for high-dimensional and large-scale data. Considering the growing popularity

of dimensionality reduction techniques in the machine learning problems, we believe that our proposed

algorithm would find numerous applications in various domains.

– 22 –

References

[1] S. Lall and J. E. Marsden. A subspace approach to balanced truncation for model reduction of nonlinear

control systems. International Journal on Robust and Nonlinear Control, 12:519–535, 2002.

[2] B. Moore. Principal component analysis in linear systems: Controllability, observability, and model reduc-

tion. Automatic Control, IEEE Transactions on, 26(1):17–32, 1981.

[3] K. Pearson. Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh,

and Dublin Philosophical Magazine and Journal of Science, 2(11):559–572, 1901.

[4] J. Ho, M. Yang, J. Lim, K. Lee, and D. Kriegman. Clustering appearances of objects under varying illumi-

nation conditions. In Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer

Society Conference on, volume 1, pages I–11. IEEE, 2003.

[5] W. Hong, J. Wright, K. Huang, and Y. Ma. Multiscale hybrid linear models for lossy image representation.

Image Processing, IEEE Transactions on, 15(12):3655–3671, 2006.

[6] A. Y Yang, J. Wright, Y. Ma, and S. S. Sastry. Unsupervised segmentation of natural images via lossy data

compression. Computer Vision and Image Understanding, 110(2):212–225, 2008.

[7] R. Vidal. A tutorial on subspace clustering. IEEE Signal Processing Magazine, 28(2):52–68, 2010.

[8] Q. Wang, Y. Ye, J. Z. Huang, and S. Feng. Fuzzy soft subspace clustering method for gene co-expression

network analysis. In Bioinformatics and Biomedicine Workshops (BIBMW), 2010 IEEE International Con-

ference on, pages 47–50. IEEE, 2010.

[9] B. McWilliams and G. Montana. Subspace clustering of high-dimensional data: a predictive approach. Data

Mining and Knowledge Discovery, 28(3):736–772, 2014.

[10] L. Parsons, E. Haque, and H. Liu. Subspace clustering for high dimensional data: a review. ACM SIGKDD

Explorations Newsletter, 6(1):90–105, 2004.

[11] L. Jing, M. K. Ng, J. Xu, and J. Z. Huang. Subspace clustering of text documents with feature weighting

k-means algorithm. In Advances in Knowledge Discovery and Data Mining, pages 802–812. Springer, 2005.

[12] J. Wright, A. Ganesh, S. Rao, Y. Peng, and Y. Ma. Robust principal component analysis: Exact recovery of

corrupted low-rank matrices via convex optimization. In Advances in neural information processing systems,

pages 2080–2088, 2009.

[13] A. Zhang, N. Fawaz, S. Ioannidis, and A. Montanari. Guess who rated this movie: Identifying users through

subspace clustering. arXiv preprint arXiv:1208.1544, 2012.

[14] R. Vidal, S. Soatto, Y. Ma, and S. Sastry. An algebraic geometric approach to the identification of a class

of linear hybrid systems. In Decision and Control, 2003. Proceedings. 42nd IEEE Conference on, volume 1,

pages 167–172. IEEE, 2003.

[15] A Baccini, Ph Besse, and A De Falguerolles. Al1-norm pca and a heuristic approach. 1996.

[16] Q. Ke and T. Kanade. Robust subspace computation using l1 norm. 2003.

[17] Q. Ke and T. Kanade. Robust l 1 norm factorization in the presence of outliers and missing data by

alternative convex programming. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE

Computer Society Conference on, volume 1, pages 739–746. IEEE, 2005.

[18] F. De La Torre and M. J. Black. A framework for robust subspace learning. International Journal of

Computer Vision, 54(1-3):117–142, 2003.

– 23 –

[19] C. Ding, D. Zhou, X. He, and H. Zha. R 1-pca: rotational invariant l 1-norm principal component analysis

for robust subspace factorization. In Proceedings of the 23rd international conference on Machine learning,

pages 281–288. ACM, 2006.

[20] H. Xu, C. Caramanis, and S. Sanghavi. Robust pca via outlier pursuit. In Advances in Neural Information

Processing Systems, pages 2496–2504, 2010.

[21] F. Nie, J. Yuan, and H. Huang. Optimal mean robust principal component analysis. In Proceedings of the

31st International Conference on Machine Learning (ICML-14), pages 1062–1070, 2014.

[22] G. H. Golub and Charles F. Van L. Matrix computations, volume 3. JHU Press, 2012.

[23] R. Salakhutdinov and G. Hinton. An e�cient learning procedure for deep boltzmann machines. Neural

computation, 24(8):1967–2006, 2012.

[24] Z. Lin, M. Chen, and Y. Ma. The augmented lagrange multiplier method for exact recovery of corrupted

low-rank matrices. arXiv preprint arXiv:1009.5055, 2010.

[25] T. Zhang, A. Szlam, and G. Lerman. Median k-flats for hybrid linear modeling with many outliers. In

Computer Vision Workshops (ICCV Workshops), 2009 IEEE 12th International Conference on, pages 234–

241. IEEE, 2009.

[26] Z Bai and YQ Yin. Limit of the smallest eigenvalue of a large dimensional sample covariance matrix. The

annals of Probability, 21:1276–1294, 1993.

[27] T. Zhang, A. Szlam, Y. Wang, and G. Lerman. Hybrid linear modeling via local best-fit flats. International

Journal of Computer Vision, 100(3):217–240, 2012.

[28] E. Elhamifar and R. Vidal. Sparse subspace clustering. In Computer Vision and Pattern Recognition, 2009.

CVPR 2009. IEEE Conference on, pages 2790–2797. IEEE, 2009.

[29] René Vidal and Paolo Favaro. Low rank subspace clustering (lrsc). Pattern Recognition Letters, 43:47–61,

2014.

[30] Benjamin Hae↵ele, Eric Young, and Rene Vidal. Structured low-rank matrix factorization: Optimality,

algorithm, and applications to image processing. In Proceedings of the 31st International Conference on

Machine Learning (ICML-14), pages 2007–2015, 2014.

[31] M. Soltanolkotabi, E. Elhamifar, E. J. Candes, et al. Robust subspace clustering. The Annals of Statistics,

42(2):669–699, 2014.

– 24 –

