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Abstract

Cross-modal retrieval methods build a common repre-
sentation space for samples from multiple modalities, typ-
ically from the vision and the language domains. For im-
ages and their captions, the multiplicity of the correspon-
dences makes the task particularly challenging. Given an
image (respectively a caption), there are multiple captions
(respectively images) that equally make sense. In this paper,
we argue that deterministic functions are not sufficiently
powerful to capture such one-to-many correspondences. In-
stead, we propose to use Probabilistic Cross-Modal Embed-
ding (PCME), where samples from the different modalities
are represented as probabilistic distributions in the com-
mon embedding space. Since common benchmarks such as
COCO suffer from non-exhaustive annotations for cross-
modal matches, we propose to additionally evaluate re-
trieval on the CUB dataset, a smaller yet clean database
where all possible image-caption pairs are annotated. We
extensively ablate PCME and demonstrate that it not only
improves the retrieval performance over its deterministic
counterpart but also provides uncertainty estimates that
render the embeddings more interpretable. Code is avail-
able at https://github.com/naver-ai/pcme.

1. Introduction
Given a query and a database from different modalities,

cross-modal retrieval is the task of retrieving the database
items which are most relevant to the query. Most research
on this topic has focused on the image and text modali-
ties [6, 10, 27, 54, 61]. Typically, methods estimate embed-
ding functions that map visual and textual inputs into a com-
mon embedding space, such that the cross-modal retrieval
task boils down to the familiar nearest neighbour retrieval
task in a Euclidean space [10, 54].

Building a common representation space for multiple
modalities is challenging. Consider an image with a group
of people on a platform preparing to board a train (Figure 1).
There is more than one possible caption describing this im-
age. “People waiting to board a train in a train platform”

Figure 1. We propose to use probabilistic embeddings to rep-
resent images and their captions as probability distributions in a
common embedding space suited for cross-modal retrieval. These
distributions gracefully model the uncertainty which results from
the multiplicity of concepts appearing in a visual scene and im-
plicitly perform many-to-many matching between those concepts.

and “The metro train has pulled into a large station” were
two of the choices from the COCO [6] annotators. Thus,
the common representation has to deal with the fact that an
image potentially matches with a number of different cap-
tions. Conversely, given a caption, there may be multiple
manifestations of the caption in visual forms. The multiplic-
ity of correspondences across image-text pairs stems in part
from the different natures of the modalities. All the different
components of a visual scene are thoroughly and passively
captured in a photograph, while language descriptions are
the product of conscious choices of the key relevant con-
cepts to report from a scene. All in all, a common repre-
sentation space for image and text modalities is required to
model the one-to-many mappings in both directions.

Standard approaches which rely on vanilla functions do
not meet this necessary condition: they can only quan-
tify one-to-one relationships [10, 54]. There have been at-
tempts to introduce multiplicity. For example, Song and So-
leymani [48] have introduced Polysemous Visual-Semantic
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Embeddings (PVSE) by letting an embedding function pro-
pose K candidate representations for a given input. PVSE
has been shown to successfully capture the multiplicity in
the matching task and to improve over the baseline built
upon one-to-one functions. Others [27] have computed re-
gion embeddings obtained with a pre-trained object detec-
tor, establishing multiple region-word matches. This strat-
egy has led to significant performance gains at the expense
of a significant increase in computational cost.

In this work, we propose Probabilistic Cross-Modal
Embedding (PCME). We argue that probabilistic map-
ping is an effective representation tool that does not re-
quire an explicit many-to-many representation as is done
by detection-based approaches, and further offers a number
of advantages. First, PCME yields uncertainty estimates
that lead to useful applications like estimating the difficulty
or chance of failure for a query. Second, the probabilistic
representation leads to a richer embedding space where set
algebras make sense, whereas deterministic ones can only
represent similarity relations. Third, PCME is complemen-
tary to the deterministic retrieval systems.

As harmful as the assumption of one-to-one correspon-
dence is for the method, the same assumption has intro-
duced confusion in the evaluation benchmarks. For exam-
ple, MS-COCO [6] suffers from non-exhaustive annotations
for cross-modal matches. The best solution would be to ex-
plicitly and manually annotate all image-caption pairs for
evaluation. Unfortunately, this process does not scale, espe-
cially for a large-scale dataset like COCO. Instead, we pro-
pose a smaller yet cleaner cross-modal retrieval benchmark
using CUB [58] and more sensible evaluation metrics.

Our contributions are as follows. (1) We propose Proba-
bilistic Cross-Modal Embedding (PCME) to properly rep-
resent the one-to-many relationships in joint embedding
spaces for cross-modal retrieval. (2) We identify shortcom-
ings with existing cross-modal retrieval benchmarks and
propose alternative solutions. (3) We analyse the joint em-
bedding space using the uncertainty estimates provided by
PCME and show how intuitive properties arise.

2. Related work
Cross-modal retrieval. In this work, we are interested in
image and text cross-modal retrieval. Much research is ded-
icated to learning a metric space that jointly embeds images
and sentences [9,10,11,20,27,48,50]. Early works [12,25]
relied on Canonical Correlation Analysis (CCA) [14] to
build joint embedding spaces. Frome et al. [11] use a hinge
rank loss for triplets built from both modalities. Wang et
al. [54] expand on this idea by also training on uni-modal
triplets to preserve the structure inherent to each modality
in the joint space. Faghri et al. [10] propose to learn such
space with a triplet loss, and only sample the hardest nega-
tive with respect to a query-positive pair.

One of the drawbacks of relying on a single global
representation is its inability to represent the diversity of
semantic concepts present in an image or in a caption.
Prior work [17, 57] observed a split between one-to-one
and many-to-many matching in visual-semantic embedding
spaces characterized by the use of one or several embed-
ding representations per image or caption. Song and Soley-
mani [48] build many global representations for each image
or sentence by using a multi-head self-attention on local de-
scriptors. Other methods use region-level and word-level
descriptors to build a global image-to-text similarity from
many-to-many matching. Li et al. [27] employ a graphical
convolutional network [24] for semantic reasoning of re-
gion proposals obtained from a Faster-RCNN [42] detector.
Veit et al. [52] propose a conditional embedding approach
to solve the multiplicity of hashtags, but it does not rely on
a joint embedding space, hence cannot be directly applied
to cross-modal retrieval.

Recently, the most successful way of addressing many-
to-many image-to-sentence matching is through joint visual
and textual reasoning modules appended on top of separate
region-level encoders [26,30,32,33,36,56,57,63]. Most of
such methods involve cross-modal attention networks and
report state-of-the-art results on cross-modal retrieval. This,
however, comes with a large increase in computational cost
at test time: pairs formed by the query and every database
entry need to go through the reasoning module. Focusing
on scalability, we choose to build on top of approaches that
directly utilize the joint embedding space and are compati-
ble with large-scale indexing.

Finally, concurrent to our work, Wray et al. [59] con-
sider cross-modal video retrieval and discusses similar lim-
itations of the one-to-one correspondence assumptions for
evaluation. They propose to consider semantic similarity
proxies computed on captions for a more reliable evalua-
tion on standard video retrieval datasets.
Probabilistic embedding. Probabilistic representations of
data have a long history in machine learning [34]. They
were introduced in 2014 for word embeddings [53], as they
gracefully handle the inherent hierarchies in language, since
then, a line of research has explored different distribution
families for word representations [28, 37, 38]. Recently,
probabilistic embeddings have been introduced for vision
tasks. Oh et al. [39] proposed the Hedged Instance Em-
bedding (HIB) to handle the one-to-many correspondences
for metric learning, while other works apply probabilistic
embeddings to face understanding [4, 46], 2D-to-3D pose
estimation [49], speaker diarization [47], and prototype em-
beddings [45]. Our work extends HIB to joint embeddings
between images and captions, in order to represent the dif-
ferent levels of granularities in the two domains and to im-
plicitly capture the resulting one-to-many associations. Re-
cently Schönnfeld et al. [43] utilized Variational Autoen-
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coders [22] for zero-shot recognition. Their latent space is
conceptually similar to ours, but is learned and used in very
different ways: they simply use a 2-Wasserstein distance as
their distribution alignment loss and learn classifiers on top,
while PCME uses a probabilistic contrastive loss that en-
ables us to use the latent features directly for retrieval. To
our knowledge, PCME is the first work that uses probabilis-
tic embeddings for multi-modal retrieval.

3. Method
In this section, we present our Probabilistic Cross-

Modal Embedding (PCME) framework and discuss its
conceptual workings and advantages.

We first define the cross-modal retrieval task. Let D “

pC, Iq denote a vision and language dataset, where I is a
set of images and C a set of captions. The two sets are
connected via ground-truth matches. For a caption c P C
(respectively an image i P I), the set of corresponding im-
ages (respectively captions) is given by τpcq Ď I (respec-
tively τpiq Ď C). Note that for every query q, there may be
multiple cross-modal matches (|τpqq| ą 1). Handling this
multiplicity will be the central focus of our study.

Cross-modal retrieval methods typically learn an embed-
ding space RD such that we can quantify the subjective no-
tion of “similarity” into the distance between two vectors.
For this, two embedding functions fV , fT are learned to
map image and text samples into the common space RD.

3.1. Building blocks for PCME

We introduce two key ingredients for PCME: joint
visual-textual embeddings and probabilistic embeddings.

3.1.1 Joint visual-textual embeddings

We describe how we learn visual and textual encoders. We
then present a previous attempt at addressing the multiplic-
ity of cross-modal associations.
Visual encoder fV . We use the ResNet image encoder [15].
Let zv “ gVpiq : I Ñ Rhˆwˆdv denote the output before
the global average pooling (GAP) layer. Visual embedding
is computed via v “ hVpzvq P RD where in the simplest
case hV is the GAP followed by a linear layer. We modify
hV to let it predict a distribution, rather than a point.
Textual encoder fT . Given a caption c, we build the array
of word-level descriptors zt “ gT pcq P RLpcqˆdt , where
Lpcq is the number of words in c. We use the pre-trained
GloVe [40]. The sentence-level feature t is given by a bidi-
rectional GRU [7]: t “ hT pztq on top of the GloVe features.
Losses used in prior work. The joint embeddings are often
learned with a contrastive or triplet loss [10, 11].
Polysemous visual-semantic embeddings (PVSE) [48]
are designed to model one-to-many matches for cross-
modal retrieval. PVSE adopts a multi-head attention block

on top of the visual and textual features to encode K
possible embeddings per modality. For the visual case,
each visual embedding vk P RD for k P t1, . . . ,Ku is
given by: vk “ LN

`

hVpzvq ` spw1attkVpzvqzvq
˘

, where
w1 P RdvˆD are the weights of fully connected layers,
s is the sigmoid function and LN is the LayerNorm [1].
attkV denotes the k-th attention head of the visual self-
attention attV . Textual embeddings tk for k P t1, . . . ,Ku
are given symmetrically by the multi-head attention: tk “
LN

`

hT pztq ` spw2attkCpztqztq
˘

. PVSE learns the visual
and textual encoders with the multiple instance learning
(MIL) objective, where only the best pair among the K2

possible visual-textual embedding pairs is supervised.

3.1.2 Probabilistic embeddings for a single modality

Our PCME models each sample as a distribution. It builds
on the Hedged Instance Embeddings (HIB) [39], a single-
modality methodology developed for representing instances
as a distribution. HIB is the probabilistic analogue of the
contrastive loss [13]. HIB trains a probabilistic mapping
pθpz|xq that not only preserves the pairwise semantic simi-
larities but also represents the inherent uncertainty in data.
We describe the key components of HIB here.
Soft contrastive loss. To train pθpz|xq to capture pairwise
similarities, HIB formulates a soft version of the contrastive
loss [13] widely used for training deep metric embeddings.
For a pair of samples pxα, xβq, the loss is defined as:

Lαβpθq “
#

´ log pθpm|xα, xβq if α, β is a match
´ log p1´ pθpm|xα, xβqq otherwise

(1)
where pθpm|xα, xβq is the match probability.
Factorizing match probability. [39] has factorized
pθpm|xα, xβq into the match probability based on the em-
beddings ppm|zα, zβq and the encoders pθpz|xq. This is
done via Monte-Carlo estimation:

pθpm|xα, xβq «
1

J2

J
ÿ

j

J
ÿ

j1

ppm|zjα, z
j1

β q (2)

where zj are samples from the embedding distribution
pθpz|xq. For the gradient to flow, the embedding distribu-
tion should be reparametrization-trick-friendly [23].
Match probability from Euclidean distances. We com-
pute the sample-wise match probability as follows:

ppm|zα, zβq “ sp´a}zα ´ zβ}2 ` bq (3)

where pa, bq are learnable scalars and sp¨q is sigmoid.

3.2. Probabilistic cross-modal embedding (PCME)

We describe how we learn a joint embedding space that
allows for probabilistic representation with PCME.
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Figure 2. Method overview. The visual and textual encoders for Probabilistic Cross-Modal Embedding (PCME) are shown. Each modality
outputs mean and variance vectors in RD , which represent a normal distribution in RD .
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Figure 3. Head modules. The visual and textual heads (hV , hT )
share the same structure, except for modality-specific modules (a).
The mean (b) and variance (c) computations differ: variance mod-
ule does not involve sigmoid sp¨q, LayerNorm (LN), and L2 pro-
jection.

3.2.1 Model architecture

An overview of PCME is shown in Figure 2. PCME rep-
resents an image i and caption c as normal distributions,
ppv|iq and ppt|cq respectively, over the same embedding
space RD. We parametrize the normal distributions with
mean vectors and diagonal covariance matrices in RD:

ppv|iq „ N phµVpzvq, diagphσVpzvqq
ppt|cq „ N phµT pztq, diagphσT pztqq

(4)

where zv “ gVpiq is the feature map and zt “ gT pcq is
the feature sequence (§3.1.1). For each modality, two head
modules, hµ and hσ , compute the mean and variance vec-
tors, respectively. They are described next.
Local attention branch. Inspired by the PVSE architec-
ture (§3.1.1, [48]), we consider appending a local attention
branch in the head modules (hµ, hσ) both for image and

caption encoders. See Figure 3 for the specifics. The local
attention branch consists of a self-attention based aggrega-
tion of spatial features, followed by a linear layer with a
sigmoid activation function. We will show with ablative
studies that the additional branch helps aggregating spatial
features more effectively, leading to improved performance.
Module for µ versus σ. Figure 3 shows the head modules
hµ and hσ , respectively. For hµV and hµT , we apply sigmoid
in the local attention branch and add the residual output. In
turn, LayerNorm (LN) [1] and L2 projection operations are
applied [48, 51]. For hσV and hσT , we observe that the sig-
moid and LN operations overly restrict the representation,
resulting in poor uncertainty estimations (discussed in §D).
We thus do not use sigmoid, LN, and L2 projection for the
uncertainty modules.
Soft cross-modal contrastive loss. Learning the joint prob-
abilistic embedding is to learn the parameters for the map-
pings ppv|iq “ pθv pv|iq and ppt|cq “ pθtpt|cq. We adopt
the probabilistic embedding loss in Equation (1), where the
match probabilities are now based on the cross-modal pairs
pi, cq: Lembpθv, θt; i, cq, where θ “ pθv, θtq are parameters
for visual and textual encoders, respectively. The match
probability is now defined upon the visual and textual fea-
tures: pθpm|i, cq « 1

J2

řJ
j

řJ
j1 sp´a}vj ´ tj

1

}2` bq where
vj and tj

1

follow the distribution in Equation (4).
Additional regularization techniques. We consider two
additional loss functions to regularize the learned uncer-
tainty. Following [39], we prevent the learned variances
from collapsing to zero by introducing the KL divergence
loss between the learned distributions and the standard nor-
mal N p0, Iq. We also employ the uniformity loss that was
recently introduced in [55], computed between all embed-
dings in the minibatch. See §A.1 for more details.
Sampling SGD mini-batch. We start by sampling B
ground-truth image-caption matching pairs pi, cq P G.
Within the sampled subset, we consider every positive and
negative pair dictated by the ground truth matches. This
would amount to B matching pairs and BpB ´ 1q non-
matching pairs in our mini-batch.
Measuring instance-wise uncertainty. The covariance
matrix predicted for each input represents the inherent un-
certainty for the data. For a scalar uncertainty measure, we
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take the determinant of the covariance matrix, or equiva-
lently the geometric mean of the σ’s. Intuitively, this mea-
sures the volume of the distribution.

3.2.2 How does our loss handle multiplicity, really?

We perform a gradient analysis to study how our loss in
Equation (1) handles multiplicity in cross-modal matches
and learn uncertainties in data. In §A.2, we further make
connections with the MIL loss used by PVSE (§3.1.1, [48]).

We first define the distance logit: ljj1 :“ ´a}vj´tj
1

}2`

b and compare the amount of supervision with different
pj, j1q values. To see this, take the gradient on ljj1 .

BLemb

Bljj1

“

#

wjj1 ¨ p1´ spljj1qq for positive match

´wjj1 ¨ spljj1q for negative match
(5)

wjj1 :“
e˘ljj1

ř

αα1 e˘lαα1
where ˘ is the positivity of match.

We first observe that if wjj1 “ 1, then Equation (5) is ex-
actly the supervision from the soft contrastive loss (Equa-
tion (1)). Thus, it is the term wjj1 that let the model learn
multiplicity and represent associated uncertainty.

To study the behavior of wjj1 , first assume that pv, tq is
a positive pair. Then, wjj1 is the softmax over the pairwise
logits ljj1 . Thus, pairs with smaller distances }vj ´ tj

1

}2

have greater weights wjj1 than distant ones. Similarly, if
pv, tq is negative pair, then wjj1 assigns greater weights on
distant pairs than close ones. In other words, wjj1 gives
more weights on pair samples that correctly predicts the dis-
tance relationships on the embedding space. This results in
a reward structure where wrong similarity predictions do
not get penalized significantly, as long as there is at least
one correct similarity prediction. Such a reward encourages
the embeddings to produce more diverse samples and hedge
the bets through non-zero values of σ predictions.

3.2.3 Test-time variants

Unlike methods that employ cross-modal reasoning mod-
ules [26, 30, 32, 33, 36, 56, 57, 63], computing match proba-
bilities at test time for PCME reduces to computing a func-
tion over pairwise Euclidean distances. This means that
the probabilistic embeddings of PCME can be used in vari-
ous ways for computing the match probabilities at test time,
with different variants having different computational com-
plexities. The options are split into two groups. (i) Sam-
pling-based variants. Similar to training, one can use
Monte-Carlo sampling (Equation (2)) to approximate match
probabilities. Assuming J samples, this requiresOpJ2q dis-
tance computations per match, as well as OpJ2q space for
every database entry. This implies that J plays an important
role in terms of test time complexity. (ii) Non-sampling

A B

C D

a) A baseball player swinging a bat at a ball.
b) A baseball player is getting ready to hit a ball.
c) A baseball player standing next to home plate holding a bat.
d) A group of baseball players at the pitch.

Figure 4. Can you match the captions to the images? In the COCO
annotations, each of the four captions corresponds to (only) one of
the four images (Answer:

A:b,B:c,C:a,D:d

).

variants. One can simply use the distances based on µ to
approximate match probabilities. In this case, both time and
space complexities becomeOp1q. We ablate this variant (“µ
only”) in our experiments, as it is directly comparable to de-
terministic approaches. We also may use any distributional
distance measures with closed-form expressions for Gaus-
sian distributions. Examples include the 2-Wasserstein dis-
tance, Jensen Shanon (JS) divergence, and Expected Likeli-
hood Kernel (ELK). We ablate them as well. The details of
each probabilistic distance can be found in §B.

4. Experiments
We present experimental results for PCME. We start with

the experimental protocol and a discussion on the problems
with current cross-modal retrieval benchmarks and evalua-
tion metrics, followed by alternative solutions (§4.1). We
then report experimental results on the CUB cross-modal
retrieval task (§4.2) and COCO (§4.3). We present an anal-
ysis of the embedding space in §4.4.

4.1. Experimental protocol

We use ResNet [15] pre-trained on ImageNet and the
pre-trained GloVe with 2.2M vocabulary [40] for initializ-
ing the visual and textual encoders. Training proceeds in
two phases: a warm-up phase where only the head modules
are trained, followed by end-to-end fine-tuning of all param-
eters. We use a ResNet-152 (resp. ResNet-50) backbone
with embedding dimension D “ 1024 (resp. D “ 512)
for MS-COCO (resp. CUB). For both datasets, models are
always trained with Cutout [8] and random caption drop-
ping [3] augmentation strategies with 0.2 and 0.1 erasing
ratios, respectively. We use the AdamP optimizer [16] with
the cosine learning rate scheduler [31] for stable training.
More implementation details are provided in §C.2. Hyper-
parameter details and ablations are presented in §D.
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4.1.1 Metrics for cross-modal retrieval

Researchers have long been aware of many potentially pos-
itive matches in the cross-modal retrieval evaluation sets.
They use metrics that reflect such consideration.

Many works report the Recall@k (R@k) metrics with
varying numbers for k. This evaluation policy, with larger
values of k, becomes more lenient to plausible wrong pre-
dictions prevalent in COCO. However, it achieves leniency
at the cost of failing to penalize obviously wrong retrieved
samples. The lack of penalties for wrongly retrieved top-k
samples may be complemented by the precision metrics.

Musgrave et al. [35] proposed the R-Precision (R-P)
metric as an alternative; for every query q, we compute the
ratio of positive items in the top-r retrieved items, where
r “ |τpqq| is the number of ground-truth matches. This pre-
cision metric has a desirable property that a retrieval model
achieves the perfect R-Precision score if and only if it re-
trieves all the positive items before the negatives.

For R-Precision to make sense, all the existing positive
pairs in a dataset must be annotated. Hence, we expand
the existing ground truth matches by seeking further plausi-
ble positive matches in a database through extra information
(e.g. class labels for COCO). More concretely, a pair pi, cq
is declared positive if the binary label vectors for the two
instances, yi, yc P t0, 1udlabel , differ at most at ζ positions.
In practice, we consider multiple criteria ζ P t0, 1, 2u and
average the results with those ζ values. We refer to metrics
based on such class-based similarity as Plausible Match
(PM) because we incentivize models to retrieve plausible
items. We refer to the R-Precision metric based on the Plau-
sible Match policy as PMRP. More details in §C.1.

4.1.2 Cross-modal retrieval benchmarks

COCO Captions [6] is a widely-used dataset for cross-
modal retrieval models. It consists of 123,287 images from
MS-COCO [29] with 5 human-annotated captions per im-
age. We present experimental results on COCO. We fol-
low the evaluation protocol of [19] where the COCO vali-
dation set is added to the training pool (referred to as rV or
rVal in [9, 10]). Our training and validation splits contain
113,287 and 5,000 images, respectively. We report results
on both 5K and (the average over 5-fold) 1K test sets.

The problem with COCO as a cross-modal retrieval
benchmark is the binary relevance assignment of image-
caption pairs pi, cq. As a result, the number of matching
captions τpiq for an image i is always 5. Conversely, the
number of matching images τpcq for a caption c is always
1. All other pairs are considered non-matching, indepen-
dent of semantic similarity. This is far from representing
the semantic richness of the dataset. See Figure 4 for an
illustration. While all 4ˆ4 possible pairs are plausible pos-
itive pairs, 12 of them are assigned negative labels during

training and evaluation. This results in noisy training and,
more seriously, unreliable evaluation results.

We re-purpose the CUB 200-2011 [58] as a more reli-
able surrogate for evaluating cross-modal retrieval models.
We utilize the caption annotations by Reed et al. [41]; they
consist of ten captions per image on CUB images (11,788
images of 200 fine-grained bird categories). False positives
are suppressed by the fact that the captions and images are
largely homogeneous within a class. False negatives are un-
likely to happen because the images contain different types
of birds across classes and the captions are generated un-
der the instruction that the annotators should focus on class-
distinguishing characteristics [41].

We follow the class splits proposed by Xian et al. [60],
where 150 classes are used for training and validation, and
the remaining 50 classes are used for the test. The hyperpa-
rameters are validated on the 150 training classes. We refer
to this benchmark as CUB Captions.

4.2. Results on CUB

Similarity measures for retrieval at test time. We have
discussed alternative similarity metrics that PCME may
adopt at test time (§ 3.2.3). The “Mean only” metric only
uses the hµ features, as in deterministic retrieval scenarios.
It only requires OpNq space to store the database features.
Probabilistic distance measures like ELK, JS-divergence,
and 2-Wasserstein, require the storage for µ and σ features,
resulting in the doubled storage requirement. Sampling-
based distance computations, such as the average L2 dis-
tance and match probability, need J2 times the storage re-
quired by the Mean-only baseline.

We compare the above variants in Table 1 and §E.1.
First of all, we observe that PCME, with any test-time sim-
ilarity measure, mostly improves over the deterministically
trained PCME (µ-only training). Even if the test-time sim-
ilarity is computed as if the embeddings are deterministic
(Mean only), PCME training improves the retrieval perfor-
mances (24.7% to 26.1% for i2t and 25.6% to 26.7% for
t2i). Other cheaper variants of probabilistic distances, such
as 2-Wasserstein, also result in reasonable performances
(26.2% and 26.7% for i2t and t2i, respectively), while in-
troducing only twice the original space consumption. The
best performance is indeed attained by the similarity mea-
sure using the match probability, with 26.3% and 26.8% i2t
and t2i performances, respectively. There exists a trade-off
between computational cost and performance and the deter-
ministic test-time similarity measures. We use the match
probability measure at test time for the rest of the paper.

Comparison against other methods. We compare
PCME against VSE0 [10] and PVSE [48] in Table 2. As
an important ingredient for PVSE, we consider the use of
the hardest negative mining (HNM). We first observe that
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PCME
variant Sampling Test-time

Similarity Metric
Space

complexity
i2t

R-P
t2i

R-P

µ only 7 Mean only OpNq 24.70 25.64

PCME

7 Mean only OpNq 26.14 26.67
7 ELK Op2Nq 25.33 25.87
7 JS-divergence Op2Nq 25.06 25.55
7 2-Wasserstein Op2Nq 26.16 26.69
3 Average L2 OpJ2Nq 26.11 26.64
3 Match prob OpJ2Nq 26.28 26.77

Table 1. Pairwise distances for distributions. There are many op-
tions for computing the distance between two distributions. What
are the space complexity and retrieval performances for each op-
tion? R-P stands for the R-Precision.

Method HNM
Image-to-text Text-to-image
R-P R@1 R-P R@1

VSE0 7 22.4 44.2 22.6 32.7

PVSE K=1 3 22.3 40.9 20.5 31.7
PVSE K=2 3 19.7 47.3 21.2 28.0
PVSE K=4 3 18.4 47.8 19.9 34.4

PCME µ only 7 24.7 46.4 25.6 35.5
PCME 7 26.3 46.9 26.8 35.2

Table 2. Comparison on CUB Caption test split. R-P and R@1
stand for R-Precision and Recall@1, respectively. The usage of
hardest negative mining (HNM) is indicated.

PVSE with HNM tends to obtain better performances than
VSE0 under the R@1 metric, with 47.8% for K=4, com-
pared to 44.2% for VSE0. However, under the R-Precision
metric, we observe all PVSE models with HNM are worse
than VSE0 (R-Precision drops from 22.4% for VSE0 to
18.4% for PVSE K=4). It seems that PVSE with HNM
tends to retrieve items based on diversity, rather than preci-
sion. We conjecture that the HNM is designed to optimize
the R@1 performances; more details in §E.2. Comparing
PVSE with different values of K, we note that increasing
K does not always bring about performance gains under the
R-Precision metric (20.5%, 21.2% and 19.9% for K=1,2,4,
respectively, for t2i), while the improvement is more pro-
nounced under the R@1 metric. Finally, PCME provides
the best performances on both R-Precision and R@1 met-
rics, except for the R@1 score for i2t. PCME also improves
upon its deterministic version, PCME µ-only, with some
margin: +1.6 pp and +1.2 pp on i2t and t2i R-Precision
scores, respectively.

4.3. Results on COCO

As we have identified potential problems with measuring
performance on COCO (§4.1.2), we report the results with
our Plausible-Match R-Precision (PMRP) metrics (§4.1.1)
that captures the model performances more accurately than
the widely-used R@k metrics. Table 3 shows the results

1K Test Images 5K Test Images

Method
i2t t2i i2t t2i

PMRP R@1 PMRP R@1 PMRP R@1 PMRP R@1

VSE++ [10] - 64.6 - 52.0 - 41.3 - 30.3
PVSE K=1 [48] 40.3˚ 66.7 41.8˚ 53.5 29.3˚ 41.7 30.1˚ 30.6
PVSE K=2 [48] 42.8˚ 69.2 43.6˚ 55.2 31.8˚ 45.2 32.0˚ 32.4
VSRN [27] 41.2˚ 76.2 42.4˚ 62.8 29.7˚ 53.0 29.9˚ 40.5
VSRN + AOQ [5] 44.7˚ 77.5 45.6˚ 63.5 33.0˚ 55.1 33.5˚ 41.1

PCMEµ only 45.0* 68.0 45.9* 54.6 34.0* 43.5 34.3* 31.7
PCME 45.0* 68.8 46.0* 54.6 34.1* 44.2 34.4* 31.9

Table 3. Comparison on MS-COCO. PMRP stands for the Plau-
sible Match R-Precision and R@1 for Recall@1. “˚” denotes re-
sults produced by the published models.

with state-of-the-art COCO retrieval methods. We observe
that the stochastic version of PCME performs better than the
deterministic variant (µ only) across the board. In terms of
the R@1 metric, PVSEK=2 [48], VSRN [27] and AOQ [5]
work better than PCME (e.g. 45.2%, 53.0%, 55.1% versus
44.2% for the 5K, i2t task). However, on the more accu-
rate PMRP metric, PCME outperforms previous methods
with some margin (e.g. 31.8%, 29.7%, 33.0% versus 34.1%
for the 5K, i2t task). The results on two metrics imply that
PCME retrieves the plausible matches much better than pre-
vious methods do. The full results can be found in §E.

4.4. Understanding the learned uncertainty

Having verified the retrieval performance of PCME, we
now study the benefits of using probabilistic distributions
for representing data. We show that the learned embeddings
not only represent the inherent uncertainty of data but also
enable set algebras among samples that roughly correspond
to their semantic meanings.
Measuring uncertainty with σ. In an automated decision
process, it benefits a lot to be able to represent uncertainty.
For example, the algorithm may refrain from making a de-
cision based on the uncertainty estimates. We show that
the learned cross-modal embeddings capture the inherent
uncertainty in the instance. We measure the instance-wise
uncertainty for all query instances by taking the geomet-
ric mean over the σ P RD entries (§3.2.1). We then com-
pute the average R@1 performances in each of the 10 un-
certainty bins. Figure 6 plots the correlation between the
uncertainty and R@1 on the COCO test set. We observe
performance drops with increasing uncertainty. In §F.2, we
visualize which word affects more to uncertainty. Example
uncertain instances and their retrieval results are in §F.3.
2D visualization of PCME. To visually analyze the behav-
ior of PCME, we conduct a 2D toy experiment by using
9 classes of the CUB Captions (details in §C.3). Figure 5
visualizes the learned image and caption embeddings. We
also plot the embedding for the most generic caption for the
CUB Captions dataset, “this bird has ăunką ăunką . . . ”,
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colorful black bird with white side and black wings 

with beige wing bars. bright orange spot on it's side.

a medium sized bird with a long neck with a white 

throat, it has a medium sized narrow pointy bill, and red eyes.

this bird is white with black 

and has a long, pointy beak.

a larger bird with a bright red head and a 

black and white body, and a long, straight bill.

this little fellow has a white belly

and breast with stripes of black 

on its crown and superciliary.

a beautiful small bird with a sharp beak is red 

all over except its back, wings and tail that are brown.

99% confidence interval for

this bird has <unk> <unk> <unk> <unk> <unk> <unk>.
a beautiful small bird with a sharp beak is red 

all over except its back, wings and tail that are brown.

Figure 5. Visualization of the probabilistic embedding. The learned image (left) and caption (right) embeddings on 9 subclass of CUB
Captions. Classes are color-coded. Each ellipse shows the 50% confidence region for each embedding. The red ellipse corresponds to the
generic CUB caption, “this bird has ăunką ¨ ¨ ¨ ăunką” with 99% confidence region.

0 1 2 3 4 5 6 7 8 9
Uncertainty levels

50

60

70

80

Re
ca

ll@
1

COCO 1k image sigma vs. Recall@1

image-to-text Recall@1

0 1 2 3 4 5 6 7 8 9
Uncertainty levels

52

54

56

58

Re
ca

ll@
1

COCO 1k caption sigma vs. Recall@1

text-to-image Recall@1

Figure 6. σ versus performance. Performance of PCME at dif-
ferent per-query uncertainty levels in COCO 1k test set.
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Figure 7. σ captures ambiguity. Average σ values at different
ratios of erased pixels (for images) and words (for captions).

where ăunką is a special token denoting the absence of a
word. This generic caption covers most of the caption vari-
ations in the embedding space (red ellipses).
Set algebras. To understand the relationship among distri-
butions on the embedding space, we artificially introduce
different types of uncertainties on the image data. In Fig-
ure 8, we start from two bird images and perform erasing
and mixing transformations [62]. On the embedding space,
we find that the mixing operation on the images results in
embeddings that cover the intersection of the original em-
beddings. Occluding a small region in input images, on the
other hand, amounts to slightly wider distributions, indicat-
ing an inclusion relationship. We quantitatively verify that
the sigma values positively correlate with the ratio of erased
pixels in Figure 7. In COCO, we observe a similar behavior
(shown in §F.1). We discover another positive correlation

(a) Intersection (mixed) (b) Inclusion (occluded)

Pied billed Grebe

σx σy = 3.48

Red bellied

Woodpecker

σx σy = 0.75

σx σy = 3.51

σx σy = 0.76

σx σy = 2.15

σx σy = 1.02

Original embedding

Transformed embedding

σx σy  Uncetainty level of

           each embedding

Figure 8. Set algebras. For two images, we visualize the em-
beddings for either erased or mixed samples. Mixing (left) and
erasing (right) operations roughly translate to the intersection and
inclusion relations between the corresponding embeddings.

between the caption ambiguity induced by erasing words
and the embedding uncertainty.

5. Conclusion

We introduce Probabilistic Cross-Modal Embedding
(PCME) that learns probabilistic representations of multi-
modal data in the embedding space. The probabilis-
tic framework provides a powerful tool to model the
widespread one-to-many associations in image-caption
pairs. To our knowledge, this is the first work that uses
probabilistic embeddings for a multi-modal task. We exten-
sively ablate our PCME and show that not only it improves
the retrieval performance over its deterministic counterpart,
but also provides uncertainty estimates that render the em-
beddings more interpretable.
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Matthieu Cord. Finding beans in burgers: Deep semantic-
visual embedding with localization. In Proc. CVPR, 2018.
2, 6, 12

[10] Fartash Faghri, David J Fleet, Jamie Ryan Kiros, and Sanja
Fidler. VSE++: Improving visual-semantic embeddings with
hard negatives. In Proc. BMVC, 2018. 1, 2, 3, 6, 7, 12, 14,
16

[11] Andrea Frome, Greg S Corrado, Jon Shlens, Samy Bengio,
Jeff Dean, Marc’Aurelio Ranzato, and Tomas Mikolov. De-
vise: A deep visual-semantic embedding model. In Proc.
NeurIPS, pages 2121–2129, 2013. 2, 3

[12] Yunchao Gong, Liwei Wang, Micah Hodosh, Julia Hocken-
maier, and Svetlana Lazebnik. Improving image-sentence
embeddings using large weakly annotated photo collections.
In Proc. ECCV, pages 529–545. Springer, 2014. 2

[13] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimension-
ality reduction by learning an invariant mapping. In Proc.
CVPR, 2006. 3

[14] David R Hardoon, Sandor Szedmak, and John Shawe-Taylor.
Canonical correlation analysis: An overview with applica-
tion to learning methods. Neural computation, 16(12):2639–
2664, 2004. 2

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proc.
CVPR, 2016. 3, 5, 12

[16] Byeongho Heo, Sanghyuk Chun, Seong Joon Oh, Dongyoon
Han, Sangdoo Yun, Gyuwan Kim, Youngjung Uh, and Jung-

Woo Ha. Adamp: Slowing down the slowdown for momen-
tum optimizers on scale-invariant weights. In Proc. ICLR,
2021. 5, 12

[17] Yan Huang, Wei Wang, and Liang Wang. Instance-aware im-
age and sentence matching with selective multimodal lstm.
In Proc. CVPR, pages 2310–2318, 2017. 2

[18] Tony Jebara, Risi Kondor, and Andrew Howard. Probabil-
ity product kernels. Journal of Machine Learning Research,
5(Jul):819–844, 2004. 11

[19] Andrej Karpathy and Li Fei-Fei. Deep visual-semantic align-
ments for generating image descriptions. In Proc. CVPR,
pages 3128–3137, 2015. 6, 12

[20] Andrej Karpathy, Armand Joulin, and Li F Fei-Fei. Deep
fragment embeddings for bidirectional image sentence map-
ping. In Proc. NeurIPS, pages 1889–1897, 2014. 2

[21] Hanjoo Kim, Minkyu Kim, Dongjoo Seo, Jinwoong Kim,
Heungseok Park, Soeun Park, Hyunwoo Jo, KyungHyun
Kim, Youngil Yang, Youngkwan Kim, et al. NSML: Meet the
MLaaS platform with a real-world case study. arXiv preprint
arXiv:1810.09957, 2018. 8

[22] Diederik P. Kingma and Max Welling. Auto-Encoding Vari-
ational Bayes. In Proc. ICLR, 2014. 3

[23] Diederik P Kingma and Max Welling. Auto-encoding varia-
tional bayes. Proc. ICLR, 2014. 3

[24] Thomas N Kipf and Max Welling. Semi-supervised classifi-
cation with graph convolutional networks. Proc. ICLR, 2017.
2

[25] Benjamin Klein, Guy Lev, Gil Sadeh, and Lior Wolf. Fisher
vectors derived from hybrid gaussian-laplacian mixture mod-
els for image annotation. arXiv preprint arXiv:1411.7399,
2014. 2

[26] Kuang-Huei Lee, Xi Chen, Gang Hua, Houdong Hu, and Xi-
aodong He. Stacked cross attention for image-text matching.
In Proc. ECCV, 2018. 2, 5

[27] Kunpeng Li, Yulun Zhang, Kai Li, Yuanyuan Li, and Yun
Fu. Visual semantic reasoning for image-text matching. In
Proc. ICCV, pages 4654–4662, 2019. 1, 2, 7, 15, 16

[28] Xiang Li, Luke Vilnis, Dongxu Zhang, Michael Boratko, and
Andrew McCallum. Smoothing the geometry of probabilistic
box embeddings. In Proc. ICLR, 2019. 2

[29] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
Proc. ECCV, 2014. 6

[30] Chunxiao Liu, Zhendong Mao, An-An Liu, Tianzhu Zhang,
Bin Wang, and Yongdong Zhang. Focus your attention: A
bidirectional focal attention network for image-text match-
ing. In Proc. ACM-MM, page 3–11, 2019. 2, 5

[31] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient
descent with warm restarts. Proc. ICLR, 2017. 5, 12

[32] Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. Vilbert:
Pretraining task-agnostic visiolinguistic representations for
vision-and-language tasks. In Proc. NeurIPS, pages 13–23,
2019. 2, 5

[33] Jiasen Lu, Vedanuj Goswami, Marcus Rohrbach, Devi
Parikh, and Stefan Lee. 12-in-1: Multi-task vision and lan-
guage representation learning. In Proc. CVPR, pages 10437–
10446, 2020. 2, 5

9



[34] Kevin P Murphy. Machine learning: a probabilistic perspec-
tive. MIT press, 2012. 2

[35] Kevin Musgrave, Serge Belongie, and Ser-Nam Lim. A met-
ric learning reality check. In Proc. ECCV, 2020. 6, 12

[36] Hyeonseob Nam, Jung-Woo Ha, and Jeonghee Kim. Dual
attention networks for multimodal reasoning and matching.
In Proc. CVPR, pages 299–307, 2017. 2, 5

[37] Arvind Neelakantan, Jeevan Shankar, Alexandre Passos, and
Andrew McCallum. Efficient non-parametric estimation of
multiple embeddings per word in vector space. In Proc.
EMNLP, pages 1059–1069, 2014. 2

[38] Dat Quoc Nguyen, Ashutosh Modi, Stefan Thater, Manfred
Pinkal, et al. A mixture model for learning multi-sense word
embeddings. In Proc. of the 6th Joint Conference on Lexi-
cal and Computational Semantics (* SEM 2017), pages 121–
127, 2017. 2

[39] Seong Joon Oh, Kevin Murphy, Jiyan Pan, Joseph Roth, Flo-
rian Schroff, and Andrew Gallagher. Modeling uncertainty
with hedged instance embedding. In Proc. ICLR, 2019. 2, 3,
4

[40] Jeffrey Pennington, Richard Socher, and Christopher D Man-
ning. Glove: Global vectors for word representation. In Proc.
EMNLP, 2014. 3, 5, 12

[41] Scott Reed, Zeynep Akata, Honglak Lee, and Bernt Schiele.
Learning deep representations of fine-grained visual descrip-
tions. In Proc. CVPR, pages 49–58, 2016. 6

[42] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. In Proc. NeurIPS, pages 91–99, 2015. 2

[43] Edgar Schonfeld, Sayna Ebrahimi, Samarth Sinha, Trevor
Darrell, and Zeynep Akata. Generalized zero-and few-
shot learning via aligned variational autoencoders. In Proc.
CVPR, pages 8247–8255, 2019. 2

[44] Florian Schroff, Dmitry Kalenichenko, and James Philbin.
Facenet: A unified embedding for face recognition and clus-
tering. In Proc. CVPR, pages 815–823, 2015. 15, 16

[45] Tyler Scott, Karl Ridgeway, and Michael Mozer. Stochastic
prototype embeddings. ICML Workshop on Uncertainty and
Robustness in Deep Learning, 2019. 2

[46] Yichun Shi and Anil K Jain. Probabilistic face embeddings.
In ICCV, 2019. 2

[47] Anna Silnova, Niko Brummer, Johan Rohdin, Themos Stafy-
lakis, and Lukas Burget. Probabilistic embeddings for
speaker diarization. In Proc. Odyssey 2020 The Speaker and
Language Recognition Workshop, pages 24–31, 2020. 2

[48] Yale Song and Mohammad Soleymani. Polysemous visual-
semantic embedding for cross-modal retrieval. In Proc.
CVPR, pages 1979–1988, 2019. 1, 2, 3, 4, 5, 6, 7, 11, 15,
16

[49] Jennifer J Sun, Jiaping Zhao, Liang-Chieh Chen, Florian
Schroff, Hartwig Adam, and Ting Liu. View-invariant prob-
abilistic embedding for human pose. In Proc. ECCV, 2020.
2

[50] Christopher Thomas and Adriana Kovashka. Preserving se-
mantic neighborhoods for robust cross-modal retrieval. In
Proc. ECCV, 2020. 2

[51] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Proc. NeurIPS,
pages 5998–6008, 2017. 4

[52] Andreas Veit, Maximilian Nickel, Serge Belongie, and Lau-
rens van der Maaten. Separating self-expression and visual
content in hashtag supervision. In Proc. CVPR, pages 5919–
5927, 2018. 2

[53] Luke Vilnis and Andrew McCallum. Word representations
via gaussian embedding. In Proc. ICLR, 2015. 2

[54] Liwei Wang, Yin Li, and Svetlana Lazebnik. Learning deep
structure-preserving image-text embeddings. In Proc. CVPR,
pages 5005–5013, 2016. 1, 2

[55] Tongzhou Wang and Phillip Isola. Understanding contrastive
representation learning through alignment and uniformity on
the hypersphere. In Proc. ICML, 2020. 4, 11

[56] Zihao Wang, Xihui Liu, Hongsheng Li, Lu Sheng, Junjie
Yan, Xiaogang Wang, and Jing Shao. CAMP: Cross-modal
adaptive message passing for text-image retrieval. In Proc.
ICCV, 2019. 2, 5

[57] Xi Wei, Tianzhu Zhang, Yan Li, Yongdong Zhang, and Feng
Wu. Multi-modality cross attention network for image and
sentence matching. In Proc. CVPR, 2020. 2, 5

[58] P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Be-
longie, and P. Perona. Caltech-UCSD Birds 200. Technical
Report CNS-TR-2010-001, California Institute of Technol-
ogy, 2010. 2, 6

[59] Michael Wray, Hazel Doughty, and Dima Damen. On se-
mantic similarity in video retrieval. In Proc. CVPR, 2021.
2

[60] Yongqin Xian, Bernt Schiele, and Zeynep Akata. Zero-shot
learning-the good, the bad and the ugly. In Proc. CVPR,
pages 4582–4591, 2017. 6

[61] Peter Young, Alice Lai, Micah Hodosh, and Julia Hocken-
maier. From image descriptions to visual denotations: New
similarity metrics for semantic inference over event descrip-
tions. ACL, 2:67–78, 2014. 1

[62] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk
Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix: Regu-
larization strategy to train strong classifiers with localizable
features. In Proc. ICCV, 2019. 8

[63] Qi Zhang, Zhen Lei, Zhaoxiang Zhang, and Stan Z. Li.
Context-aware attention network for image-text retrieval. In
Proc. CVPR, 2020. 2, 5

Supplementary Materials
We include additional materials in this document. We

describe additional details on PCME to complement the
main paper (§A). Various probabilistic distances are intro-
duced (§B). We provide the experimental protocol details
(§C), ablation studies (§D), and additional results (§E). Fi-
nally, more uncertainty analyses are shown (§F).

A. More details for PCME
In this section, we provide details for PCME.
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A.1. The uniformity loss

Recently, Wang et al. [55] proposed the uniformity loss
which enforces the feature vectors to distribute uniformly
on the unit hypersphere. In Wang et al. [55], the uniformity
loss was shown to lead to better representations for L2 nor-
malized features. Since our µ vectors are projected to the
unit L2 hypersphere, we also employ the uniformity loss to
learn better representations. We apply the uniformity loss
on the joint embeddings Z “ tv11 , t

1
1, . . . , v

J
B , t

J
Bu in the

mini-batch size of B as follows:

LUnif “
ÿ

z,z1PZˆZ
e´2}z´z1

}
2
2 . (A.1)

A.2. Connection between the soft contrastive loss
and the MIL objective of PVSE

In the main text, we presented an analysis based on gra-
dients to study how the loss function in Equation (1) handles
plurality in cross-modal matches and learns uncertainties in
data. Here we make connections with the MIL loss used by
PVSE (§3.1.1, [48]); this section follows the corresponding
section in the main paper.

To build connections with PVSE, consider a one-hot
weight array wjj1 where, given that pv, tq is a positive pair,
the “one” value is taken only by the single pair pj, j1qwhose
distance is smallest. Define wjj1 for a negative pair pv, tq
conversely. Then, we recover the MIL loss used in PVSE,
where only the best match among J2 predictions are uti-
lized. As we see in the experiments, our softmax weight
scheme provides more interpretable and performant super-
vision for the uncertainty than the argmax version used by
PVSE.

B. Probabilistic distances
We introduce probabilistic distance variants to mea-

sure the distance between two normal distributions p “
N pµ1, σ

2
1q and q “ N pµ2, σ

2
2q. All distance functions are

non-negative and become zero if and only if two distribu-
tions are identical. Extension to multivariate Gaussian dis-
tributions with diagonal variance can be simply derived by
taking the summation over the dimension-wise distances.

Kullback–Leibler (KL) divergence measures the dif-
ference between two distributions as follows:

KLpp, qq “

ż

log
p

q
dp

“
1

2

„

log
σ2
2

σ2
1

`
σ2
1

σ2
2

`
pµ1 ´ µ2q

2

σ2
2



.

(B.1)

KL divergence is not a metric because it is asymmetric
(KLpp, qq ‰ KLpq, pq) and does not satisfy the triangu-
lar inequality. If q has a very small variance, nearly zero,
the KL divergence between p and q will be explored. In

other words, if we have a very certain embedding, which
has nearly zero variance, in our gallery set, then the cer-
tain embedding will be hardly retrieved by KL divergence
measure. In the latter section, we will show that KL diver-
gence leads to bad retrieval performances in the real-world
scenario.

Jensen-Shannon (JS) divergence is the average of for-
ward (KLpp, qq) and reverse (KLpq, pq) KL divergences.
Unlike KL divergence, the square root of JS divergence is a
metric function.

JSpp, qq “
1

2
rKLpp, qq `KLpq, pqs . (B.2)

Like KL divergence, JS divergence still has division term
by variances σ1, σ2, it can be numerically unstable when
the variances are very small.

Probability product kernels [18] are generalized inner
product for two distributions, that is:

PPKpp, qq “

ż

ppzqρqpzqρdz. (B.3)

When ρ “ 1, it is called the expected likelihood kernel
(ELK), and when ρ “ 1{2, it is called Bhattacharyya’s
affinity [2], or Bhattacharyya kernel.

Expected likelihood kernel (ELK) is a special case of
PPK when ρ “ 1 in Equation (B.3). In practice, we take log
to compute ELK as follows:

ELKpp, qq “
1

2

„

pµ1 ´ µ2q
2

σ2
1 ` σ

2
2

` logpσ2
1 ` σ

2
2q



. (B.4)

Bhattacharyya kernel (BK) is another special case of
PPK when ρ “ 1{2 in Equation (B.3). The log BK is de-
fined as follows:

BKpp, qq “
1

4

„

pµ1 ´ µ2q
2

σ2
1 ` σ

2
2

` 2 logp
σ2
σ1
`
σ1
σ2
q



. (B.5)

Wasserstein distance is a metric function of two dis-
tributions on a given metric space M . The Wasser-
stein distance between two normal distributions on R1, 2-
Wasserstein distance, is defined as follows:

W pp, qq2 “ pµ1 ´ µ2q
2 ` σ1 ´ σ2

2. (B.6)

C. Experimental Protocol Details
We introduce the cross-modal retrieval benchmarks con-

sidered in this work. We discuss the issues with the current
practice for the evaluation and introduce new alternatives.

C.1. Plausible Match R-Precision (PMRP) details

In this work, we seek more reliable sources of pairwise
similarity measurements through class and attribute labels
on images. For example, on the CUB caption dataset, we
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Figure C.1. Number of distinct categories in MS-COCO vali-
dation set. Images that have more than 10 categories are omitted.

have established the positivity of pairs by the criterion that
a pair pi, cq is positive if and only if both elements in the
pair belong to the same bird class. Similarly, on the COCO
caption dataset, we judge the positivity through the multi-
ple class labels (80 classes total) attached per image: a pair
pi, cq is positive if and only if the binary class vectors for
the two instances, yi, yc P t0, 1u80, differ at most at ζ po-
sitions (Hamming Distance). In MS-COCO 5k test images,
48 images do not have instance labels; we omit them during
the evaluation. Note that because we use R-Precision, the
ratio of positive items in top-r retrieved items where r is the
number of the ground-truth matches, increasing ζ will make
r larger, and will penalize methods more, which retrieve ir-
relevant items.

In Figure C.1, we visualize the number of distinct cat-
egories per image in the MS-COCO validation set. In the
figure, we can observe that about the half of the images
have more than two categories. To avoid penalty caused
by almost neglectable objects (as shown in Figure C.2), we
set ζ “ 2 for measuring the PMRP score. For PMRP with
different ζ rather than 2, results can be found in §E.

C.2. Implementation details

Common. As in Faghri et al. [10], we use ResNet [15]
pre-trained on ImageNet and the pre-trained GloVe with
2.2M vocabulary [40] for initializing the visual and textual
encoders (fV , fT ). We first warm-up the models by train-
ing the head modules for each modality, with frozen feature
extractors. Afterwards, the whole parameters are fine-tuned
in an end-to-end fashion. We use the ResNet-152 backbone
with embedding dimension D “ 1024 for MS-COCO and
ResNet-50 with D “ 512 for CUB. For all experiments, we
set the number of samples J “ 7 (the detailed study is in
§E). We use AdamP optimizer [16] with the cosine learning
rate scheduler [31] for stable training.

MS-COCO. We follow the evaluation protocol of [19]
where the validation set is added to the training pool (re-
ferred to as rV in [9, 10]). Our training and validation splits
contain 113,287 and 5,000 images, respectively. We report
results on both 5K and (the average over 5-fold) 1K test sets.

Hyperparameter search protocol. We validate the initial
learning rate, number of epochs for the warm-up and fine-
tuning, and other hyperparameters on the 150 CUB training
classes and the MS-COCO caption validation split. For MS-
COCO, we use the initial learning rate as 0.0002, 30 warm-
up and 30 finetune epochs. Weights for regularizers LKL
and LUnif are set to 0.00001 and 0, respectively. For CUB
Caption, the initial learning rate is 0.0001, the number of
warm-up epochs 10 and fine-tuning epochs 50. Weights for
regularizers LKL and LUnif are set to 0.001 and 10, respec-
tively. For both datasets, models are always trained with
Cutout [8] and random caption dropping [3] augmentation
strategies with 0.2 and 0.1 erasing ratios, respectively. The
initial values for a, b in Equation (3) are set to -15 and 15
for COCO (-5 and 5 for CUB), respectively.

C.3. CUB 2D toy experiment details

We select nine bird classes from CUB caption; three
swimming birds (“Western Grebe”, “Pied Billed Grebe”,
“Pacific Loon”), three small birds (“Vermilion Flycatcher”,
“Black And White Warbler”, “American Redstart”), and
three woodpeckers (“Red Headed Woodpecker”, “Red Bel-
lied Woodpecker”, “Downy Woodpecker”).

We slightly modify PCME to learn 2-dimensional em-
beddings. For the image encoder, we use the same structure
as the other experiments, but omitting the attention modules
from the µ and σ modules. For the caption encoder, we train
1024-dimensional bi-GRU on top of GloVe vectors and ap-
ply two 2D projections to get the 1024 dimensional µ and
σ embedding. The other training details are the same as the
other CUB caption experiments.

D. Ablation studies

We provide ablation studies on PCME for regularization
terms, σ module architectures, the number of samples J
during training, and embedding dimension D.

Regularizing uncertainty. PCME predicts probabilistic
outputs. We have considered uncertainty-specific regular-
ization strategy in the main paper, the information bottle-
neck loss LKL and the uniform loss LUnif. We study the ben-
efits of those ingredients. Table D.1 shows our results. We
report cross-validated MAP@R [35] on the 150 class train-
ing CUB caption datasets. The KL loss increases the sigma
values to a meaningful range (from e´13.01 « 2.2ˆ10´6 to
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a man that is standing in the dirt with a bat.

a baseball player is in the middle of his swing

as the catcher is ready to catch the ball.

a baseball player hitting the ball away

from the catcher.

a batter at a baseball game swinging his bat.

a baseball player swinging a bat over a base.

a baseball player is ready to swing at the ball as

the catcher and umpire crouch behind him.

a baseball batter takes a swing at a baseball.

a man is swinging a bat at a ball.

the mets batter swings and hopefully makes contact

a baseball player swinging a bat over home plate.

three uniformed baseball players on a field together.

a baseball player holding a bate near home base.

some baseball players are playing baseball on a field

johnny gomes (#5) stands in for the red sox

a group of men playing baseball on a field.

one of the twins baseball players is up to bat.

a baseball player in the batter's box during a game.

professional athlete preparing to take swing at

ball during game.

a baseball batter is smiling as he prepares to swing

at home plate.

a baseball player standing next to home base with a bat.

ζ = 0 ζ = 1 ζ = 2

Figure C.2. MS-COCO plausible match examples. The plausible examples of the most left instance from ζ “ 0 to ζ “ 2. The contained
instance classes, ζ, figure and captions are shown.

i2t t2i Image Caption
LKL LUnif MAP@R MAP@R Erlog σs Erlog σs

7 7 10.56 13.32 -13.01 -8.77
3 7 10.57 13.77 -3.84 -3.89
7 3 10.56 13.31 -11.26 -7.59
3 3 10.65 13.84 -3.63 -3.64

Table D.1. Regularization for uncertainty. Cross-validated
MAP@R performances on CUB training set, with and without KL
and uniformity loss terms. The scale estimate Erlog σs is an aver-
aged value over the σ dimensions as well as the validation samples.

Method DoF(σ) i2t t2i

PCME µ only 0 24.7 25.6
PCME isotropic 1 25.7 26.0
PCME 512 26.3 26.8

Table D.2. DoF for σ. R-Precision on the CUB Caption test set.

e´3.84 « 0.02. The uniformity loss prevents the uncertainty
from collapsing and slightly improves performances.

DoF for σ. Though by default we parametrize the full di-
agonal elements of the covariance matrix Σ P RDˆD with
the vector σ P RD, one may parametrize σ more cheaply
via e.g. a scalar, by restricting the embedding distribution
family to isotropic Gaussians. Table D.2 shows the trade-
off between the degree of freedom (DoF) for σ and the
R-Precision of PCME. Indeed, allowing greater degrees of
freedom for σ brings better performance. Figure D.1 shows
the average variance values for each dimension, which sup-
ports that the learned variances require high DoF.
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Figure D.1. How isotropic are variances? Sorted values of vari-
ance are compared against the trained values of isotropic PCME.
Results on CUB test set.

µ σ I-to-T T-to-I
local attention local attention R-Precision R-Precision

7 7 25.60 25.85
7 3 24.65 25.15
3 7 25.01 25.52
3 3 26.28 26.77

sp¨q & LN in σ module I-to-T R-Precision T-to-I R-Precision

3 23.81 24.58
7 26.28 26.77

Table D.3. Architectures for µ and σ. Architecture design
choices comparison on CUB caption test split.

Architecture study. Table D.3 shows the architecture de-
sign comparisons for PCME on CUB Caption test split. In
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Figure D.2. Number of samples. The cross-validated PCME per-
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64 128 256 512 1024
Dimension size

12

13

14

15

16

Te
st

 m
ea

n 
M

AP
@

R

Dimension size and performances

PCME
PCME (  only)

Figure D.3. Embedding dimensions. The PCME performance
against the embedding dimensions D.

the table, applying local attention to both µ and σ modules
performs the best. Furthermore, we ablate sigmoid and LN
parts of σ modules, which can restrict the representation of
variances. As a result, limiting representations by sigmoid
and layer norm harms the final performances.

Number of samples during training. In Figure D.2, we
report the cross-validated mean R-Precision scores by vary-
ing the number of samples J during training. In the figure,
we observe that larger J leads to higher performances. In
practice, we choose J “ 7 for computation budgets.

Embedding dimensions. Performances against different
embedding space dimensions for PCME µ only and PCME
are illustrated in Figure D.3. In all embedding dimensions,
our stochastic approach (PCME) consistently outperforms
the deterministic approach (PCME µ only).

E. More results

In this section, we provide additional experimental re-
sults for PCME on CUB Caption and COCO Caption.

PCME
variant Sampling Test-time

Similarity Metric
Space

complexity
i2t

R-P
t2i

R-P

µ only 7 Mean only OpNq 24.70 25.64

PCME

7 Mean only OpNq 26.14 26.67
7 KL-divergence Op2Nq 21.99 20.92
7 JS-divergence Op2Nq 25.06 25.55
7 ELK Op2Nq 25.33 25.87
7 Bhattacharyya Op2Nq 24.93 25.27
7 2-Wasserstein Op2Nq 26.16 26.69
3 Average L2 OpJ2Nq 26.11 26.64
3 Match prob OpJ2Nq 26.28 26.77

Table E.1. Pairwise distances for distributions. There are many
options for computing the distance between two distributions.
What are the space complexity and retrieval performances for each
option? R-P stands for the R-Precision.
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Figure E.1. Comparison of different retrieval strategies.

E.1. More results on similarity measures for re-
trieval at test time

In Table E.1, we report the full retrieval results obtained
by the different distribution distances discussed in §B. As
discussed in §B, KL-divergence even shows worse results
than the “Mean only” baseline, a non-probabilistic distance.
We also report the performances against the number of sam-
ples of matching probability in Figure E.1. In the figure, the
matching probability strategy shows better results than non-
sampling strategies from J “ 3, and larger J leads to better
performances. Due to the computation complexity, we use
J “ 7 in Table E.1.

E.2. Discussion on hardest negative mining

Since Recall@K is widely used for the evaluation of
many cross-modal retrieval tasks, many recent cross-modal
retrieval methods optimize Recall@1 directly by the hardest
negative mining (HNM) strategy [10], that is:

max
t1
rα` simpv, t1q ´ simpv, tqs

`max
v1
rα` simpv1, tq ´ simpv, tqs,

(E.1)
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Figure E.2. Hardest negative mining (HNM) vs. Non-HNM.

Method HNM
Image-to-text Text-to-image
R-P R@1 R-P R@1

VSE0 7 22.35 44.19 22.57 32.71

PVSE K=1 7 22.65 43.11 22.78 33.49
PVSE K=2 7 21.62 44.05 21.49 31.31
PVSE K=4 7 21.12 40.51 20.90 30.94

PVSE K=1 3 22.34 40.88 20.51 31.71
PVSE K=2 3 19.67 47.29 21.16 27.98
PVSE K=4 3 18.38 47.76 19.94 34.39

PCME µ only 7 24.70 46.38 25.64 35.50
PCME 7 26.28 46.92 26.77 35.22

Table E.2. Comparison on CUB Caption unseen 50 class test
set. R-P and R@1 stand for R-Precision and Recall@1, respec-
tively. The usage of the hardest negative mining (HNM) is indi-
cated.

where sim is the cosine similarity. This strategy neglects
all other possible positive candidates, but only considers
the most similar positive and negative pairs. To reveal that
HM strategy disadvantages to learn the global structure, we
measure two metrics on CUB caption, R-Precision and Re-
call@1. For non-HM strategy, we replace max to

ř

in
Equation (E.1). Figure E.2 shows R-Precision and recall@1
performances with different mining strategies. In the fig-
ure, PVSE with HNM strategy shows higher Recall@1 by
increasing the number of embeddings K (36.3 Ñ 37.6 Ñ
41.1), but at the same time, it reduces the R-Precision scores
(21.4 Ñ 20.4 Ñ 19.2). On the other hand, for all K, Non-
HNM strategy PVSE results show worse R@1 than HNM
results but achieves higher R-Precision performances. In
Table 3, we show that this phenomenon is also observed in
MS-COCO by measuring PMRP scores.

E.3. Full results for CUB and COCO

CUB Caption. We report the full results on CUB Caption
test data for unseen 50 classes and seen 150 classes in Ta-

Method HNM
Image-to-text Text-to-image
R-P R@1 R-P R@1

VSE0 7 19.85 40.88 18.72 25.51

PVSE K=1 7 19.69 40.65 18.72 25.58
PVSE K=2 7 18.84 41.45 17.72 24.99
PVSE K=4 7 18.31 38.08 17.21 23.54

PVSE K=1 3 18.98 38.77 18.23 23.49
PVSE K=2 3 17.62 44.24 17.71 22.78
PVSE K=4 3 17.47 44.98 17.44 26.19

PCME µ only 7 20.65 42.70 20.16 26.94
PCME 7 20.87 43.10 20.37 26.47

Table E.3. Comparison on CUB Caption seen 150 class test set.
R-P and R@1 stand for R-Precision and Recall@1, respectively.
The usage of the hardest negative mining (HNM) is indicated.
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Figure E.3. PMRP by varying ζ. Plausible Match R-Precision
scores for four methods with ζ “ t0, 1, 2u.

ble E.2 and Table E.3, respectively. In both splits, PCME
shows the best R-Precision performances against baselines.

COCO Caption. We report the full results on MS-COCO
Caption 1k test images and 5k test images in Table E.4 and
Table E.5, respectively. We also report additional exper-
iments on PVSE such as larger K (K “ 4), a different
negative mining strategy (semi-hard negative mining [44].
In the tables, although PCME shows slightly worse R@1
results than PVSE K=2, PCME outperforms PVSE K=2 in
PMRP scores.

Also, we report PMRP scores of four methods
(PVSE [48], VSRN [27], VSRN + AOQ [5] and PCME)
by varying ζ for PMRP in Figure E.3. In the figure, PMRP
scores for VSRN and VSRN + AOQ are getting worse by
increasing ζ, in other words, theses method shows less co-
herence if we allow one missing or altering object class in
the retrieved items. On the other hand, PCME shows even
increased performance with ζ ą 0, in other words, PCME
retrieves more plausible items than other methods.
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Method D
Image-to-text Text-to-image

PMRP R@1 R@5 R@10 PMRP R@1 R@5 R@10

VSE++ BMVC’18 [10] 1024 - 64.6 90.0 95.7 - 52.0 84.3 92.0
PVSE K=1 CVPR’19 [48] 1024 40.3˚ 66.7 91.0 96.2 41.9˚ 53.5 85.1 92.7
PVSE K=2 CVPR’19 [48] 1024 ˆ 2 42.8˚ 69.2 91.6 96.6 43.7˚ 55.2 86.5 93.7

PVSE K=4 CVPR’19 [48] 1024 ˆ 4 41.5* 68.0 91.9 96.6 42.7* 54.1 85.5 92.9
PVSE K=1 + SHM [44] 1024 ˆ 1 41.6* 66.1 91.4 96.4 42.4* 53.6 85.5 93.0
PVSE K=2 + SHM [44] 1024 ˆ 2 39.0* 65.1 90.9 96.5 39.4* 53.1 85.4 93.0

VSRN ICCV’19 [27] 2048 41.2˚ 76.2 94.8 98.2 42.4˚ 62.8 89.7 95.1
VSRN + AOQ ECCV’20 [5] 2048 ˆ 2 44.7˚ 77.5 95.5 98.6 45.6˚ 63.5 90.5 95.8

PCMEµ only 1024 45.0* 68.0 92.0 96.2 45.9* 54.6 86.3 93.8
PCME 1024 ˆ 2 45.1* 68.8 91.6 96.7 46.0* 54.6 86.3 93.8

Table E.4. 1K MS-COCO results. Plausible Match R-Precision (PMRP), Recall@K results on MS-COCO 1k test images. “˚” denotes
results produced by the published models.

Method D
Image-to-text Text-to-image

PMRP R@1 R@5 R@10 PMRP R@1 R@5 R@10

VSE++ BMVC’18 [10] 1024 - 41.3 71.1 81.2 - 30.3 59.4 72.4
PVSE K=1 CVPR’19 [48] 1024 29.3˚ 41.7 73.0 83.0 30.1˚ 30.6 61.4 73.6
PVSE K=2 CVPR’19 [48] 1024 ˆ 2 31.8˚ 45.2 74.3 84.5 32.0˚ 32.4 63.0 75.0

PVSE K=4 CVPR’19 [48] 1024 ˆ 4 30.5* 43.0 72.8 83.6 31.0* 31.2 61.5 74.4
PVSE K=1 + SHM [44] 1024 ˆ 1 30.6* 41.1 71.6 82.7 30.8* 30.9 60.8 73.7
PVSE K=2 + SHM [44] 1024 ˆ 2 28.1* 40.7 70.8 81.9 27.8* 29.9 60.4 73.4

VSRN ICCV’19 [27] 2048 29.7˚ 53.0 81.1 89.4 29.9˚ 40.5 70.6 81.1
VSRN + AOQ ECCV’20 [5] 2048 ˆ 2 33.0˚ 55.1 83.3 90.8 33.5˚ 41.1 71.5 82.0

PCMEµ only 1024 34.0* 43.5 73.1 84.2 34.3* 31.7 62.2 74.9
PCME 1024 ˆ 2 34.1* 44.2 73.8 83.6 34.4* 31.9 62.1 74.5

Table E.5. Comparison on 5K MS-COCO. Plausible Match R-Precision (PMRP), Recall@K results on MS-COCO 5k test images. “˚”
denotes results produced by the published models.

F. More uncertainty analysis
Uncertainty estimation by PCME brings interesting in-

sights for the cross-modal retrieval tasks. In this section,
we show additional uncertainty analysis for PCME.

F.1. Corruption vs. uncertainty in MS-COCO

As Figure 7, we illustrate the uncertainty level by vary-
ing corruption levels on pixels and words in Figure F.1. The
left figure shows the uncertainty levels against occluded
pixels. As we expected, more occlusion leads to higher
uncertainty. The right figure shows the uncertainty levels
against the number of appended ăunką tokens.

F.2. Frequent words for each uncertainty bin

Figure F.2 shows the frequent words per each uncertainty
bin. We use term frequency–inverse document frequency
(TF-IDF) as the frequent counter, defined as follows:

TF-IDFpiq “ p1` log niq log
N

ni
, (F.1)

0 22 44 67 89 112134156179201
Occlusion hole size

5.9

5.8

5.7

5.6

Av
er

ag
e 

lo
g

MS-COCO image occlusion vs. uncertainty

Image uncertainty

0 5 10 15 20
Number of appended tokens

5.86

5.84

5.82

5.80

5.78

Av
er

ag
e 

lo
g

MS-COCO text appending vs. uncertainty

Text uncertainty

Figure F.1. σ captures ambiguity in COCO Caption. Average
log σ values at different ratios of erased pixels (for images) and
appended ăunką tokens (for captions).

where N is the number of total captions, and ni is the num-
ber of captions which contain word i. For the image word
frequency, we use their ground truth captions for computing
TF-IDF scores.

F.3. Example uncertain samples

We visualize the uncertain images and captions, and their
corresponding retrieved items in Figure F.3 and Figure F.4.
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Interestingly, the retrieved captions and images are plausi-
ble results for the given query items. These qualitative re-
sults also show how the Recall@1 measure is noisy, and the
proposed Plausible Match R-Precision (PMRP) is a more
plausible and reliable measure to compare different retrieval
methods.
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Figure F.2. Frequent words in each uncertainty bin. Term frequency–inverse document frequency (TF-IDF) sorted word frequencies are
shown for each uncertainty bin (U-Bin, ascending order) for image (upper row) and caption (bottom row) modalities.

Two people in the midst of a tennis match on a grass court.

Two men on grass court playing a game of tennis.

Two men playing doubles tennis on a grass court.

Two men playing tennis on a grass field.

a couple of people play a game of tennis on a grass surface

A male tennis players on the court with rackets.

A boy riding on ski's down a slope.

A young boy is attempting to slide down a slope.

A kid is riding down the street on a skateboard.

a man with warm clothes skating on the snow

a young person riding skis on a snowy field

a person skating in very much snow with warm clothes

Two boys riding skateboards in the street, behind tree branches.

two young people riding skate boards on a flat surface

Two young men riding skateboards across a parking lot.

two young men skateboarding in an open area during winter

A couple of kids riding on top of skateboards.

A couple of men holding tennis racquets on a tennis court.

Two men playing tennis at a somewhat large facility.

Two men playing doubles tennis on a grass court.

A couple of tennis players during a couples game about to deliver a hit.

A male tennis players on the court with rackets.

A surfer is on his board in the middle of an ocean spraying wave.

A man on a surfboard riding a wave

A man is surfing a small wave in the ocean.

A man riding on a wave on a surf board.

a person riding a surf board on a wave

A surfer riding a wave in a blue ocean.

A wet suited surfer riding the crest of an azure wave

a male surfing a large ocean wave on a white surfboard

The surfer is working on riding the big wave.

A surfer is riding on a large wave.

A surf boarder who is riding a wave.

Figure F.3. Uncertain image examples. Highly uncertain images, retrieved captions by PCME, and their ground truth captions are shown.

Figure F.4. Uncertain caption examples. Highly uncertain captions, retrieved images by PCME, and their ground truth image are shown.
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