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Abstract

Recent powerful vision classifiers are biased towards
textures, while shape information is overlooked by the mod-
els. A simple attempt by augmenting training images us-
ing the artistic style transfer method, called Stylized Ima-
geNet, can reduce the texture bias. However, Stylized Im-
ageNet approach has two drawbacks in fidelity and diver-
sity. First, the generated images show low image quality
due to the significant semantic gap betweeen natural im-
ages and artistic paintings. Also, Stylized ImageNet train-
ing samples are pre-computed before training, resulting in
showing the lack of diversity for each sample. We propose
a StyleAugment by augmenting styles from the mini-batch.
StyleAugment does not rely on the pre-defined style refer-
ences, but generates augmented images on-the-fly by nat-
ural images in the mini-batch for the references. Hence,
StyleAugment let the model observe abundant confounding
cues for each image by on-the-fly the augmentation strategy,
while the augmented images are more realistic than artis-
tic style transferred images. We validate the effectiveness
of StyleAugment in the ImageNet dataset with robustness
benchmarks, such as texture de-biased accuracy, corrup-
tion robustness, natural adversarial samples, and occlusion
robustness. StyleAugment shows better generalization per-
formances than previous unsupervised de-biasing methods
and state-of-the-art data augmentation methods in our ex-
periments.

1. Introduction

While deep neural networks have shown the remarkable
success comparing humans in complex vision recognition
systems [13, 31], deep neural networks have shown disap-
pointed generalization performances against unfamiliar cor-
ruptions, such as noises, blurs, small perturbations, visual
filters, or occlusions [14, 12, 5]. This fundamental limita-
tion often weaken practical usages of deep models in real-
world deployment scenarios, such as self-driving cars [28].

As a naive approach for improving robustness against in-
put distribution shifts, one can propose a data augmentation
solution, i.e., augmenting corruptions during the training.
However, the data augmentation approach is still not a per-
fect solution; a model trained with specific corruptions is
only generalized to the seen corruptions, while the unseen
corruption generalization is still not achievable [12, 5].

Recent breakthroughs improving robustness have ap-
peared at the different side of researches; a number of stud-
ies have shown that improving clean input performances
also can help the robust representation against input corrup-
tions [40, 37, 23, 41]. Especially, the most powerful models
utilize a large amount of diverse extra data points [35] by
semi-supervised learning with a very strong teacher [38, 41]
or learning with extra knowledge such as language supervi-
sion [30]. However, learning with hundreds of millions of
data points is not a always accessible solution for various
visual recognition tasks, while learning without extra data
still far from the performances of the clean images e.g., a
model with 78.9% clean accuracy only showing 28.1% cor-
rupted input accuracy [41]. This implies that we need more
high-level understanding of why the deep vision models are
not generalizable to unseen distribution shifts.

Recently, Geirhos et al. [11] have shown that strong vi-
sion classifiers, e.g., ResNet [13], focus on the spurious
texture cues, while shape information is overlooked by the
network. To mitigate the texture bias, Geirhos et al. [11]
generated abundant texture-ized images by historical artis-
tic paintings 1, named Stylized ImageNet, based on artis-
tic style transfer methods [10, 21]. By reducing the texture
bias of neural networks using Stylized ImageNet, the shape-
biased models show robust prediction on distribution shifts
and better downstream transfer learning performances on
object detection [31]. Bahng et al. [1] have shown that the
existing deep models only focusing on small discriminative
regions, resulting in being biased towards local cues, such
as color and texture. By expanding the effective receptive

1The authors used ∼80K artistic images from Kaggle’s
painter by numbers dataset (https://www.kaggle.com/c/
painter-by-numbers).
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field of the model, Bahng et al. [1] showed that the texture
unbiased performances and performances under distribution
shifts are improved. From these observations, we presume
that the texture bias is the source of unexpected behavior of
deep neural networks.

Previous attempts to mitigate texture bias is usually fo-
cusing on utilizing strong human inductive bias. For exam-
ple, Stylized ImageNet [11] needs a pre-defined specifica-
tion of texture images to augmentation. Since it is unable
to pre-define all possible textures in real-world, Geirhos
et al. utilized a large historical artistic painting images for
texture images. However, as shown in Figure 1, because
the significant gap between artistic images and natural im-
ages, the stylized images from artistic images often show
low fidelity. As a result, solely training with Stylized Im-
ageNet shows worse performances than training with clean
ImageNet (76.13% → 60.18% [11]). It shows that careful
choice of texture images should be required for better per-
formances. Furthermore, due to the computation and the re-
source limitation, each image in Stylized ImageNet is only
transferred by a random artistic image, i.e., not all ∼80K
images in Kaggle’s Painter by Numbers dataset are used for
each image, but only one painting is chosen. This strategy
can drastically reduce the diversity of the generated images.
To sum up, the pre-computed stylized dataset has low fi-
delity due to the significant gap between natural images and
artistic paintings and low diversity due to the dataset build-
ing strategy.

Similarly, Bahng et al. [1] also heavily relyed on the
human inductive bias; the method should define an addi-
tional “biased” architecture by its design. For example, to
reduce the texture bias of ResNet [13], Bahng et al. [1] uti-
lizes BagNet [2] with restricted receptive field by chang-
ing the 3 × 3 convolution filters of ResNet to the 1 × 1
filters. Although previous attempts with heavy human in-
ductive bias have shown impressive improvements in many
robustness benchmarks (e.g., ImageNet-A [16], ImageNet-
C [14], unbiased accuracies), it limits the practical usage in
the tasks requiring a different inductive bias. Furthermore,
theses methods can suffer from the carefully choice of pre-
defined configurations, such as texture images [11] or archi-
tectural choice [1], while a mis-specification can seriously
drops overall performances.

In this paper, we propose a new data augmentation
method, StyleAugment, for de-biasing texture biases of
deep neural networks by augmenting styles from natural
images. Unlike previous style augmentation method [11],
our method does not require any pre-defined texture im-
ages to avoid heavy dependency on the quality of the pre-
defined texture images and sensitivity to mis-specifications.
Rather than augmenting styles from pre-defined images, our
method extracts styles from the natural images from the
training mini-batch. Compared to the pre-stylization strat-

egy by Geirhos et al., our online stylization from the mini-
batch strategy has two advantages; the style images are from
the natural images as the content images which reduces the
semantic gap between the transferred images and the origi-
nal images; a model can observe diverse styles for each im-
age while the pre-stylization strategy only allows to observe
a specific pre-defined texture for each image. StyleAug-
ment also can be viewed as a Mixup variant [42, 40], but
StyleAugment does not mix labels to let the model only
focus on objectness, not confounding cues, such as back-
grounds, textures, or color.

As a model trained with StyleAugment learns a tex-
ture de-biased representations, the model outperforms pre-
vious de-biasing methods (e.g., ReBias [1], LfF [29]) and
in-distribution data augmentation methods (e.g., CutMix
[40], Mixup [42]) in ImageNet-9 [1] robustness bench-
marks, such as shape-texture de-biased accuracy [1], cor-
ruptions (ImageNet-C [14]), natural adversarial samples
crawled from the web (ImageNet-A [16]), and occluded
samples. Our experimental results on ImageNet-1k [32]
and CIFAR-10 [25] show a similar conclusion; StyleAug-
ment improves the robustness against the input distribu-
tion shifts, e.g., ImageNet-C or CIFAR-10-C benchmarks
[14]. We also validate the design choice of StyleAugment
in ImageNet-9. The results show that other design choices,
such as changing the stylization method from AdaIN [21]
to WCT2 [39] and mixing labels as Mixup variants [42, 40]
improve the in-distribution generalization, but show perfor-
mance drops in robustness benchmarks.

2. Related Works

2.1. Unsupervised de-biasing

While previous de-biasing method, such as fairness, as-
sumes the existence of bias labels (e.g., assuming that there
exists the protected attribute labels during the training), it
is often unrealistic to assume the all bias labels are acces-
sible by the model; labeling requires a huge human anno-
tator costs, and the bias labels are often ill-defined, e.g., it
is difficult to categorize natural textures in pre-defined tex-
ture sets. To avoid the direct use of bias labels, de-biasing
without explicit bias annotation has been actively studied
in recent years. Especially, utilizing two networks, one for
capturing bias and the other for de-biasing from the biased
network, have been one of the major branches in this field.
For example, in VQA tasks, the networks are known to
be easily biased towards much easier text representations,
while ignoring visual representations. To mitigate the issue,
RUBi [3] and LearnedMixin [6] adjusted the final logit be-
fore the cross-entropy loss of the multi-modal model by us-
ing predictions from the uni-modal model where RUBi uses
multiplication and LearnedMixinH uses summation. In the
uni-modal debiasing tasks, HEX [36] employs a texture ex-
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(a) Clean Image (b) Artistic Stylization [11] (c) StyleAugment (Ours) (d) Style Reference Images

Figure 1: Limitation of Stylized ImageNet. Due to the significant gap between the natural images (Figure 1a) and the artistic
images, the samples from Stylized ImageNet (Figure 1b) (stylized by artistic images) often loses the content information,
and shows low image fidelity. On the other hand, the samples generated by the proposed StyleAugmentation (Figure 1c)
utilizes natural images as the style reference (Figure 1d) to achieve both preserving the content information and confounding
the spurious correlations of the images, such as backgrounds.
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tractor model and lets features extracted by the target model
be orthogonal to the texture extractor outputs. ReBias [1]
makes two models have different capacity so a model is bi-
ased towards specific cues, e.g., color or texture. Learning
from Failure (LfF) [29] uses the re-weighting cross-entropy
where the biased network is trained by the knowledge that
networks in the early stage of training rely more on the spu-
rious correlation than networks in the late stage of training.

While previous unsupervised de-biasing methods utilize
additional biased model, our method does not need any ad-
ditional biased model, but only requires a pre-trained style
transfer algorithm, such as AdaIN [21]. In the experiments,
our method outperforms previous de-biasing methods in
ImageNet clean accuracy as well as the ImageNet robust-
ness benchmarks, such as texture de-biased accuarcy [1],
ImageNet-C [14] and ImageNet-A [16].

2.2. Data augmentation methods

Since deep models are data hungry [27], synthesizing
abundant training images by random crop, random flip, and
color jittering have become a rule-of-thumb for enhancing
the generalizability of deep models [34, 20]. Recent data
augmentation methods have attended on either synthesizing
mixed samples [42, 40], or applying a series of very strong
image filters, such as equalize, solarize, Cutout [9], to make
difficult samples [7, 15, 8]. Our method can be viewed as
a variant of Mixup approaches, such as Mixup [42], Cut-
Mix [40], while our method does not mix labels of sam-
ples to prevent a model attending on spurious correlations,
(i.e., textures) rather than the objectness (i.e., shape). In
this study, we did not compare our method with augmen-
tation methods with visual filters, such as AugMix [15] or
RandAugment [8], because these algorithms need to pre-
define augmentation types by a strong human prior knowl-
edge, while our goal is to make universally applicable data
augmentation algorithm without a strong inductive bias.

2.3. Stylization-based augmentation methods

Since Geirhos et al. [11] have shown that deep convo-
lutional neural networks are biased towards textures, and
a simple stylization-based augmentation (StyleImageNet)
can mitigate the texture biases, stylization-based augmenta-
tion methods have been studied in a robustness view point.
While the previously proposed data augmentation methods
showed that the performance improvements in existing ro-
bustness benchmarks [42, 40, 15], the data augmentation
methods for in-distribution generalization is known to be
not helpful when the semantic gap between the training im-
ages and the test images is significantly large, such as do-
main generalization benchmarks [4]. From this motivation,
Zhou et al. [43] proposed a Mixup-like stylization augmen-
tation method named MixStyle for domain generalization
benchmark. MixStyle mixes two images from different do-

mains to let the model be generalized to diverse domains.
Our method focuses on a conventional image recognition
task (i.e., the ImageNet classification task) in the de-biasing
aspects (i.e., additional ImageNet robustness benchmarks).
The stylization-based augmentation strategy also studied by
Hong et al. [19], a contemporary work of our study. Hong
et al. proposed to utilize both the content loss and the style
loss by mixing labels as Mixup [42] or CutMix [40]. Our
method does not mix the labels to avoid confounding fac-
tors, i.e., textures.

Stylized ImageNet [11] is proposed to mitigate the tex-
ture bias of deep models, not only learning shape-biased
features but also showing performance improvements in
downstream tasks, such as ImageNet classification, ob-
ject detection, and the ImageNet-C corruption robustness
benchmark. Stylized ImageNet, however, has fundamental
limitations on its image fidelity (as the significant gap be-
tween the artistic paintings and the target natural images)
and lack of the style diversity for each image (as the data
generation process generating all training images before
training). Our method mitigates these two issues by uti-
lizing the natural images from the mini-batch as the style
reference, showing better fidelity and diversity as shown in
Figure 1.

3. Style Augmentation Without the Pre-defined
Styles or Textures

3.1. Preliminary: Arbitrary Style Transfer by
Adaptive Instance Normalization (AdaIN)

Arbitrary style transfer tasks [10, 21, 26] aim to gener-
ate an image with the given two images, i.e., content and
style images. The underlying assumption of style transfer
methods since Gatys et al. [10] is that the feature statistics,
including mean and standard deviation, represent the tex-
ture of images. Primal studies [10] directly optimize the
input image to match the feature statistics of the content
(mean) and the style (covariance, or Gram matrix) in an it-
erative manner. Real-time style transfer methods, such as
whitening-coloring-transform (WCT) [26] or adaptive in-
stance normalization (AdaIN) [21], approximate the opti-
mization process by replacing feature statistics of content
and style images. We use AdaIN style transfer method for
real-time data augmentation.

Let Enc and Dec be an encoder and a decoder. AdaIN
style transfer first extracts a feature f from the input image
x by f = Enc(x). For the content and style images c, s and
their corresponding features fc, fs, the AdaIN operation is
defined as follows:

AdaIN(fc, fs) = σ(fs)

(
fc − µ(fc)
σ(fc)

+ µ(fc)

)
, (1)

where µ(·), σ(·) denotes the feature statistics from the in-
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stance normalization. The transferred feature is decoded
by the decoder as x̃ = Dec(AdaIN(fc, fs)). We use
the ImageNet-trained VGG-16 network [33] as the encoder
Enc, and the official AdaIN decoder as the decoder Dec
following the official implmentation2.

3.2. StyleAugment: a stylization-based augmenta-
tion without pre-defined textures

For the given mini-batch B = (x1, x2, . . . , xn) with
batch size n, StyleAugment generates a new augmented
mini-batch B′ by augmenting stylized images where the
style references are from the other samples in the mini-
batch. In each training iteration, StyleAugment randomly
combines styles from the mini-batch to make diverse im-
age samples. In practice, we train the model with the origi-
nal mini-batch and the augmented mini-batch, i.e., B + B′.
We illustrate the PyTorch pseudo code for StyleAugment
in Figure 2. StyleAugment does not require any prior
knowledge on the pre-defined textures (e.g., Stylized Im-
ageNet [11]) or strong image visual filters (e.g., AutoAug-
ment [7], AugMix [15], RandAugment [8]). StyleAugment
training strategy enables the mini-batch-level knowledge in-
teraction as Mixup variants [42, 40], but StyleAugmentation
does not mix labels which can make the model rely on spu-
rious correlations, such as textures or backgrounds. We will
discuss the details in §4.3.

3.3. Discussions

Compared to the artistic stylized images, natural stylized
images show benefits on the image fidelity. Figure 1 shows
the example stylized images by artistic style transfer (Fig-
ure 1b) and by the proposed StyleAugment (Figure 1c). In-
terestingly, the images generated by StyleAugment show di-
verse distribution shifts, rarely observed in real-world. For
example, in the second row of the figure, the background of
the globefish seems as a grassfield. Similarly, in the fourth
row, the dog shows the “eye” texture from the butterfly im-
age, and the background changes from snow to the grass-
like texture. In other words, StyleAugment generates an
image with uncommon correlations, such as “a globefish on
the grassfield” or “a dog with butterfly patterns”. By aug-
menting rare combinations of the true objectness and the
other confounding factors, StyleAugment makes a model
learn de-biased representations to the spurious correlations,
such as background, textures, or color.

However, StyleAugment still has a limitation on its im-
age quality. For example, as shown in the first row of Fig-
ure 1, StyleAugment tends to preserve the original content
information compared to artistic style transfer, but there ex-
ists the damage of the content information. This may hurt
the final performance of the model as shown in [11]. To

2https://github.com/xunhuang1995/AdaIN-style

understand the trade-off between shape-preserving and styl-
ization, we evaluate our method with a photorealistic style
transfer method [39], focusing on the edge preserving, but
only transferring color information. Our experimental re-
sults show that StyleAugment with AdaIN shows worse re-
sults in in-distribution generalization performances, but bet-
ter results in distribution shift generalization. We will dis-
cuss the details in §4.3.

4. Experiments
In this section, we demonstrate the effectiveness of

StyleAugment in ImageNet classification tasks. We also
compare our design choice with other possible variants of
StyleAugment.

4.1. Experiments Settings

Dataset. We use the ImageNet [32] classification bench-
marks for measuring the effectiveness of our method. In
the main experiments, we use the subset of ImageNet with
9 super-class (ImageNet-9) as Bahng et al. [1]. ImageNet-
9 consists 54,600 training images and 2,100 test images.
We also measure the generalization performance of the
models using distribution shifted ImageNet images. First,
we measure the unbiased accuracies of ImageNet-9 as
Bahng et al. The unbiased accuracy measures the average
of combination-wise accuracies where the combination is
found by the texture clustering algorithm. The unbiased ac-
curacy is computed by taking an average over all possible
combinations of texture clusters and image labels. Show-
ing better unbiased accuracy means the model is less biased
towards spurious texture information. ImageNet-C [14]
contains 20 corruptions3, such as Gaussian noise, motion
blur, weather changes. We measure the average perfor-
mances over 20 corruptions and 5 severties. An improved
performance on ImageNet-C implies that ImageNet-A [16]
is a collection of the failure cases of the ImageNet-trained
ResNet-50 [13] model (called “natural adversarial exam-
ples”). As previous studies [35, 38, 41, 30] have ob-
served, achieving high ImageNet-A performances without
extra dataset is a challenging task, without considering ar-
chitectural changes [18]. Therefore, better ImageNet-A ac-
curacy (without extra dataset or architecture changes) indi-
rectly shows that the model less relies on shortcuts in the
datasets for their predictions. Finally, we report the perfor-
mances of the center occluded images for measuring occlu-
sion robustness. Following [40], we zero-ed out the center
pixels with the 112 × 112 patch size.

Implementation details: For fair comparisons, we fol-
low the setting of Bahng et al. [1] for ImageNet-9 ex-

3The original ImageNet-C paper suggests to use 15 corruptions for
evaluation, while 5 corruptions are remained as “test” set. We use all 20
corruptions to compute ImageNet-C performances of the models.
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1 def train_iteration(inputs, targets):
2 # inputs: a standard Torch image array
3 # targets: a standard Torch label array
4 rand_index = torch.randperm(inputs.size()[0])
5

6 # styletransfer: an arbitrary function for style transfer. The former argument is the content and
the latter is the style.

7 transferred = styletransfer(inputs, inputs[rand_index])
8 inputs = torch.cat([inputs, transferred], dim=0)
9 targets = torch.cat([targets, targets], dim=0)

10

11 # model is a regular CNN and criterion is the cross entropy function
12 outputs = model(inputs)
13 loss = criterion(outputs, targets)
14

15 # optim: a standard optimizer such as Adam or AdamP
16 optim.zero_grad()
17 loss.backward()
18 optim.step()

Figure 2: PyTorch pseudo code for StyleAugment

Model Clean Unbiased Acc [1] ImageNet-C [14] ImageNet-A [16] Occlusion

Vanilla (ResNet-18 [13])† 90.8 88.8 54.2 24.9 71.3
Biased (BagNet-18 [2])† 67.7 65.9 31.7 18.8 59.7

LearnedMixin + H [6]† 64.1 62.7 27.5 15.0 33.5
RUBi [3]† 90.5 88.6 53.7 27.7 71.3
ReBias [1]† 91.9 90.5 57.5 29.6 73.4
LfF [29] 93.2 92.0 57.8 28.1 77.0

CutMix [40] 93.8 91.8 54.6 27.1 83.1
Mixup [42] 93.2 91.4 61.5 33.4 77.9
Stylized ImageNet [11]† 88.4 86.6 61.1 24.6 64.4

StyleAugment 93.8 92.6 65.3 29.6 73.0
StyleAugment + AdamP [17] 95.9 94.8 72.5 32.1 75.8

Table 1: Comparison of state-of-the-art de-biasing and augmentation methods on the ImageNet-9 validation dataset.
We measure the ImageNet-9 top-1 validation accuracy (Clean), the unbiase accuracy using texture clustering (Unbiased Acc)
following Bahng et al. [1], ImageNet-C top-1 accuracy, ImageNet-A top-1 accuracy, and the top-1 accuracy on occluded
samples. The first and the second best methods are denoted in bold numbers and underlined numbers. The rows with †

denotes the same weights from Bahng et al. [1].

periments; We use the ResNet-18 [13] backbone with the
batch size as 128, the initial learning rate as 0.001, and
the cosine learning rate scheduling. The models are trained
with 120 epochs. We exclude all image distortion-based
augmentations, such as color jittering and lightening for
precisely understanding the effectiveness of each method.
For ImageNet-1k experiments, we use the same setting
as ImageNet-9, and the models are trained with 90 train-
ing epochs. We trained ResNet-18 and ResNet-50 with
StyleAugment for ImageNet-1k.

Finally, we additionally report CIFAR-10 [25] results,
where the batch size is set to 128, the number of training
epochs is set to 100, and the initial learning rate is set to 0.1

decayed by the cosine annealing scheduling.
Note that StyleAugment doubles the number of training

samples as shown in Figure 2. We set the number of clean
samples as the half of the batch size in all experiments.

All experiments except ImageNet-9 adopts AdamP opti-
mizer [17] (ImageNet-9 experiments use Adam [24]). We
use 2 V100 GPUs for ImageNet experiments, and 1 V100
GPU for CIFAR-10 experiments. NAVER Smart Machine
Learning (NSML) [22] is used for all experiments.

Comparison methods. We compare our StyleAugment
with two major directions of researches: unsupervised de-
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Clean ImageNet-A [16] ImageNet-C [14] Noise Blur Weather Digital

ResNet-18 69.8 1.1 30.1 30.8 18.9 12.3 9.4
+ StyleAugment 68.3 (-1.5) 2.1 (+1.0) 35.8 (+5.6) 39.0 (8.1) 25.1 (6.2) 19.9 (7.6) 17.2 (7.8)

ResNet-50 76.1 0.8 36.2 41.0 26.1 19.3 16.5
+ StyleAugment 73.8 (-2.3) 3.5 (2.7) 43.6 (7.4) 53.2 (12.1) 38.7 (12.6) 34.5 (15.1) 32.8 (16.3)

Table 2: Impact of StyleAugment on the ImageNet-1k validation dataset. Clean accuracy, ImageNet-A top-1 accuracy,
ImageNet-C top-1 accuracy, and the average performances on the ImageNet-C subsets are shown. We use the official ResNet
models provided by the PyTorch vision library. Note that rows with “+StyleAugment” are trained without conventional image
distortions such as color jittering and lightening, while the baseline methods are trained with the image distortions.

CIFAR-10 test CIFAR-10-C

ResNet-18 92.3 66.1
+StyleAugment 92.3 (+0.0) 67.6 (+1.5)

Table 3: Impact of StyleAgument on CIFAR-10 dataset.
CIFAR-10 test accuracy and CIFAR-10 corrupted (CIFAR-
10-C) performances are shown.

biasing methods and data augmentation without human
prior knowledge. We compare StyleAugment with four un-
supervised de-biasing methods, including LearnedMixin +
H [6], RUBi [3], ReBias [1], and Learning from Failure
(LfF) [29]. These methods are designed to overcome the
shortcut learning (i.e., bias problems) of the models. We
also evaluate three data augmentation methods in the same
benchmark: CutMix [40], Mixup [42] and Stylized Ima-
geNet [11]. Other augmentation methods requiring extra
knowledge on image distortions (e.g., solorize, equalize) are
not compared in this study to avoid unexpected effects by
the additional image distortions.

4.2. Main results

ImageNet-9. Table 1 shows the comparison of de-biasing
methods, data augmentation methods, and our StyleAug-
ment. In the table, we first observe that data augmentation
methods show remarkable improvements in in-distribution
accuracies (93.8% by CutMix and 93.2% by Mixup) com-
paring to de-biasing methods, such as ReBias and LfF, but
their unbiased accuracies are worse than LfF (92.0% by LfF,
91.8% by CutMix and 91.4% by Mixup).

In ImageNet-C benchmarks, de-biasing methods and
CutMix shows marginal improvements against the baseline
(baseline: 54.2%, ReBias: 57.5%, LfF: 57.8%, CutMix:
54.6%), while Mixup and Stylized ImageNet show sig-
nificant ImageNet-C performance improvements (Mixup:
61.5%, Stylized ImageNet 61.1%). In particular, Stylized
ImageNet shows worse performances in clean, unbiased ac-
curacy, ImageNet-A and occlusion benchmarks, but shows
remarkable performance improvement in ImageNet-C. This

implies that stylization helps the robustness against com-
mon corruptions, but its low visual quality hurts the in-
distribution generalization performance as well as other un-
biased performances.

We also observe that ReBias (24.9% → 29.6%) and
LfF (24.9% → 28.1%) show remarkable improvements
in ImageNet-A performances, while CutMix (27.1%) and
Stylized ImageNet (24.6%) show marginal improvements
compared to ReBias and LfF. This result implies that
de-biasing methods are helpful for improving robustness
against spurious correlations.

Finally, we observe that our StyleAugment shows the
best performances in in-distribution generalization (same
as CutMix – 93.8%), unbiased accuracy (92.6%, while
91.8% CutMix is the second best one), and ImageNet-
C benchmark (with a large margin to 61.5% by Mixup,
StyleAugment shows 65.3%). Although StyleAugment
shows worse ImageNet-A performances, StyleAugment
shows the same ImageNet-A performances with ReBias.
Since StyleAugment focuses on learning feature distribu-
tion shifts, StyleAugment only shows marginal improve-
ments in occlusion benchmark (71.3%→ 73.0%).

We also report the results trained by StyleAugment and
AdamP optimizer [17] showing strong performance im-
provements in various tasks, including computer vision, ro-
bustness, and audio tasks. By using AdamP, we improve
the performances of StyleAugment by significant gaps for
clean accuracy (93.8%→ 95.9%), unbiased accuray (92.6%
→ 94.8%), ImageNet-C performance (65.3% → 72.5%),
ImageNet-A performance (29.6%→ 32.1%), and occlusion
benchmark (73.0%→ 75.8%).

ImageNet-1k and CIFAR-10 Table 2 shows the impact
of StyleAugment in the ImageNet-1k benchmark. Note that
our StyleAugment results did not use the standard augmen-
tations, such as color jittering and lightening. In the table,
we observe that the StyleAugmented models show slightly
worse performances in the in-distribution generalization
performances (due to the lack of the standard augmenta-
tions). However, in other robustness benchmarks including
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Model Clean Unbiased Acc [1] ImageNet-C [14] ImageNet-A [16] Occlusion

StyleAugment (proposed) 93.8 92.6 65.3 29.6 73.0

StyleAugment + WCT2[39] 94.1 (+0.3) 92.2 (-0.4) 57.0 (-8.3) 31.7 (+2.1) 77.6 (+4.6)
StyleAugment + Label mixing 94.2 (+0.4) 92.7 (+0.1) 62.0 (-3.3) 29.3 (-0.3) 76.0 (3.0)

Table 4: Ablation study on design choices of StyleAugment. We compare the peformances of StyleAugment variants on
ImageNet-9 benchmark as Table 1.

ImageNet-A and ImageNet-C, the StyleAugmented models
show better performances than the vanilla counterparts even
with worse clean accuracies. We observe similar results in
Table 3 for CIFAR-10 experiments. The StyleAugmented
model shows comparable clean accuracy, but better corrup-
tion robustness compared to the vanilla ResNet-18.

Implication and limitation. As we observed in
ImageNet-9 and CIFAR-10-C experiments, our StyleAug-
ment improves the overall performances of the deep models
when the number of training data points is small (54K
for ImageNet-9, 50K for CIFAR-10). On the other hand,
ImageNet-1k results show that StyleAugment improves
the robustness of the model, while the model shows
performance drops in clean accuracy. We presume that
it is because our StyleAugment implementation does
not contain the standard color jittering and lightening
augmentations. Also, we presume that it is due to the low
image fidelity of AdaIN transferred images. As shown
in Geirhos et al. [11], the performance can be improved
by applying additional “fine-tuning” process on the clean
training images. We did not test fine-tuning strategy in
this study, but we assume the image quality affects a lot
to the in-distribution performances. As a primal study,
in the following section, we investigate the effect of the
style transfer method to in-distribution generalization and
out-of-distribution generalization.

4.3. Ablation studies

We conduct ablation studies of design choices of
StyleAugment in ImageNet-9. We tested two variants of
StyleAugment in the image quality and the target label.
First, as we discussed in the previous sections, the image
quality by AdaIN is not perfect (Figure 1). Especially,
AdaIN loses edge and shape information of the original im-
age. We use a photorealistic style transfer model WCT2, fo-
cusing on preserving edge information by the Haar wavelet
transform. Note that WCT2 transfers color and light in-
formation, while AdaIN transfers texture information. In
the second row of Table 4, we report the StyleAugment
performances when AdaIN encoder and decoder modules
are changed to WCT2 encoder and decoder. For real-time
computation, we modify the original WCT2 algorithm from

whitening-coloring-transform [26] to adaptive instance nor-
malization (Equation (1)). We observe that StyleAugment
with WCT2 shows better in-distribution generalization per-
formance (94.1%) than StyleAugment with AdaIN (93.8%),
as well as ImageNet-A (29.6% → 31.7%) and occlusion
performances (73.0%→ 77.6%). However, StyleAugment
with WCT2 shows drastic performance drops in ImageNet-
C (65.3%→ 57.0%) by losing texture information. To sum
up, the better image quality by content preservation im-
proves in-distribution generalization performances, but can-
not generalize the corruption robustness by losing advan-
tages of texture transferring.

We also test a variant on the target labels of StyleAug-
ment. First, we mix content and style labels for the target
label as mixup variants. We observe similar phenomenon
to the results of WCT2; it improves clean accuracy, but
drops ImageNet-C performance. We assume that it is be-
cause StyleAugment allows the model to observe a sample
with various spurious cues, such as texture and background
(as shown in Figure 1). However, if we mix the content
and style labels, the model can attend unexpected predic-
tion cues, rather than object information itself.

5. Conclusion
In this paper, we propose a new data augmentation

method using stylization methods. The proposed StyleAug-
ment generates augmented images by applying AdaIN style
transfer between the mini-batch samples, while the pre-
vious stylization-based approach, Stylized ImageNet, uses
pre-defined artistic paintings. Compared to Stylized Ima-
geNet, the model trained with our StyleAugment can ob-
serve more diverse and realistic images with various con-
founding factors such as backgrounds, textures. In the ex-
periments, we show that our StyleAugment shows improve-
ments in robustness benchmarks, such as corruption ro-
bustness, while showing comparing or outperforming in-
distribution generalization performances. While changes
in the stylization method or the label mixing strategy im-
prove the in-distribution generalization performances, the
changes show worse robustness performances. It shows that
our StyleAugment strategy makes images with various spu-
rious correlations from style images, e.g., texture, resulting
in improvements of robustness performances.
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