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Abstract

Multimodal learning has seen remarkable progress, particularly with the emer-
gence of large-scale pre-training across various modalities. However, most current
approaches are built on the assumption of a deterministic, one-to-one alignment be-
tween modalities. This oversimplifies real-world multimodal relationships, where
their nature is inherently many-to-many. This phenomenon, named multiplicity,
is not a side-effect of noise or annotation error, but an inevitable outcome of se-
mantic abstraction, representational asymmetry, and task-dependent ambiguity in
multimodal tasks. This position paper argues that multiplicity is a fundamental bot-
tleneck that manifests across all stages of the multimodal learning pipeline: from
data construction to training and evaluation. This paper examines the causes and
consequences of multiplicity, and highlights how multiplicity introduces training
uncertainty, unreliable evaluation, and low dataset quality. This position calls for
new research directions on multimodal learning: novel multiplicity-aware learning
frameworks and dataset construction protocols considering multiplicity.

1 Introduction

Multimodal learning has emerged as a foundation in modern machine learning, showing recent
breakthroughs in tasks involving vision, language, audio, action, and beyond [1, 2, 3, 4, 5, 6, 7, 8].
The advent of large-scale pre-training has significantly expanded the scope of what such systems can
achieve. However, this success relies on a simplifying assumption: that mappings across modalities
are one-to-one. Whether for contrastive pre-training or retrieval-based evaluation, each instance in
one modality is assumed to correspond to exactly one correct counterpart in another, e.g., one image
to one caption. However, this one-to-one alignment assumption is fundamentally misaligned with the
nature of real-world multimodal data. In practice, the relationship between modalities is inherently
many-to-many, e.g., an image can be described by multiple captions and vice versa, a property called
“multiplicity”, the existence of multiple plausible correspondences between modalities.

This position paper argues that multiplicity is an inevitable and inherent challenge in multimodal
learning, and multimodal learning should be reframed around multiplicity. Throughout the
paper, it will be shown how multiplicity affects the entire multimodal learning pipeline, from data
construction, training (e.g., contrastive pre-training), to retrieval-based evaluation. Multiplicity is not
a simple noise or side-effect, but a fundamental characteristic of multi-modal learning.

As shown in Fig. 1, a multimodal setting introduces a new challenge compared to unimodal settings.
Supervised unimodal settings assume a pre-defined and fixed label set, where all the instances belongs
to one class (sometimes multiple classes if considering multi-labeled classification [9]), namely, they
assume instance-wise annotations. Therefore, even though we increase the dataset size, the newly
added instances are irrelevant to the “ground truth” of the existing instances. On the other hand,
multimodal settings usually assume one-to-one pairwise relationships (sometimes one-to-many if we
collect multiple annotations for each instance, such as COCO Caption [10]). Unlike unimodal settings,
multimodal tasks rely on pairwise annotations. Thus, adding a new multimodal pair increases the

Preprint. Under review.

https://arxiv.org/abs/2505.19614v1


(a) Unimodal task (many-to-one) (b) Multimodal task (assuming one-to-one, but many-to-many)

“Cat” “Dog”

pre-defined, fixed label set

The new image only
interacts with the label set;

no interaction with
the existing images

The new image/text can make new correspondences
with the existing texts/images

“A cat staring directly at the camera”

“A photo of a single cat”

“A relaxed cat sitting on a chair”

“An adorable and fluffy cat”

positive match plausible, but negative match

Figure 1: How unimodal task and multimodal task are different? Unimodal tasks assume a fixed and
pre-defined label set. Even though we add more instances in the dataset, the number of correspondences increases
constantly, and the new instance does not affect to the existing instances. However, the correspondences in
multimodal datasets, assuming one-to-one mapping, increase O(N) by adding one multimodal pair.

number of annotations by O(N), where N is the dataset size. Furthermore, while unimodal settings
can carefully design the property of their label sets (e.g., avoiding semantic overlapping between
labels by considering the hierarchy from wordnet [11], or considering the popularity for balancing
[9]), the nature of multimodal pairs is highly diverse, introducing multiple sources of multiplicity.

The roots of multiplicity are manifold and diverse. First, as illustrated in Fig. 1, multimodal datasets
inherently introduce O(N2) pairwise annotations, where the property of each modality instance is
usually uncontrollable (e.g., it is difficult to manually modify sensor inputs, such as images or sounds)
– See Fig. 1 (b). Second, there exists intra-modal variability problem: multiple instances in one
modality correspond to the same semantic concept. For example, a single concept (e.g., cat) can be
instantiated in diverse ways within an image modality. Many-to-many mappings naturally arise due to
redundancy within each modality – See Fig. 1 and 2 (a). Third, there are asymmetries in information
density and representation mechanisms (e.g., dense image exhaustively captured by photographic
sensors versus sparse linguistic descriptions with selectively chosen concepts by humans). The same
modality item can be interpreted in multiple valid ways when expressed in the other modality, and it
make complete and symmetric alignment infeasible. Ambiguity in what “counts” as a corresponding
item leads to multiple valid alignments – See Fig. 2 (b). Finally, the definition of correspondence
depends on task objectives or context. Different tasks demand different alignment notions, e.g., for
vision-language tasks, should an image be aligned to a caption describing its category, its background,
its future implication, or its narrative framing? For audio-visual tasks, should a sound be aligned to
on-screen actions, ambient context, or narrative tone? There is no single “true” counterpart. The
set of valid correspondences varies by purpose, introducing conditional multiplicity – See Fig. 2 (c).
Namely, there is no “truly corresponding unique pair” for a given instance; it depends on how we
define the task. Section 2 will discuss more details of the source of multiplicity.

Multiplicity is unavoidable for multimodal tasks. Unfortunately, as the number of correspondences
grows quadratically with the dataset size, making it infeasible to verify all possible matches. Namely,
we should assume that we have sparse annotations for cross-modal matching; even though some
correspondences are treated as positives, there might be additional plausible positives from “negative”
relationships. This property introduces challenges throughout the multimodal learning pipeline. For
example, in a standard training scenario with a standard multimodal dataset that assumes one-to-one
correspondence, valid but unannotated positives are treated as negatives, leading to false negatives
(FNs). These FNs can degrade evaluation reliability in retrieval-based benchmarks. FNs can also
affect training by introducing ambiguity in instance or pairwise relationship. Considering these
problems, multiplicity should be carefully considered during dataset construction, as design choices
at this stage can either preserve or suppress the many-to-many nature of modality relationships.
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“Cat”

(a) Intra-modal variability

Sensor inputs: Information is exhaustively captured by sensors;
The information density is determined by the sensor property,
e.g., RGB, RGB-D, or multispectral (non-visible light) sensors

Language description: Selectively choose concepts and describe.

Concepts:
Cat, grey cat, hat, santa hat, toy, bee toy,
eyes open, staring the camera, sitting,
stripe patterned rug, ...

(b) Asymmetries in information (c) Task-dependent alignment

A single concept can
be instantiated in

various ways

“A photo”, “A photo of a grey cat”, “A grey cat wearing a santa hat”,
“A cat staring the camera”, “A cat is relaxing on a striped rug”, ...

On-screen sound
e.g., cat meowing

Ambient music
e.g., funny music

Off-screen sound
e.g., TV sound,

talking sound by
humans

Figure 2: How multiplicity occurs? The source of multiplicity in multimodal datasets is diverse.

2 Multiplicity: An inevitable and inherent challenge

Definition. Let R ⊆ X × Y denote valid cross-modal relations between two modalities X and Y
(e.g., vision-language [1], audio-visual [5]); Note that we assume two modalities for simplicity, but
this definition can be easily extended to multiple modalities, such as vision-language-action [6, 7] and
video-language-audio [12], R ⊆ X1×X2×. . .×Xn. Standard practice presumes |r : (x, y) ∈ R| = 1
for all x (and symmetrically for y). Multiplicity (or many-to-many correspondence) is a scenario
that satisfies |r : (x, y) ∈ R| ≥ 1. Note that the number of relationships grows quadratically with the
scale of the data set, |R| can also be quadratic with the size of the dataset in the worst case.

In unimodal settings, Y becomes a fixed and pre-defined label set (e.g., class labels or pixel-wise
mask annotations), i.e., |Y| is constant. Furthermore, label sets for unimodal settings are usually
well-defined; there is little cases when x ∈ X belongs to multiple y ∈ Y . Although some studies
showed that popular classification tasks (e.g., ImageNet [11]) are inherently multi-labeled tasks
[13, 14, 15]), the scale of “multi-label” is relatively low compared to multimodal multiplicity. For
example, Yun et al. [15] showed that while ImageNet images may correspond to multiple valid labels,
approximately five labels per image can account for most of the semantic ambiguity. Hence, adding a
new instance x in the dataset does not change “ground-truths” of existing data points – See Fig. 1 (a).

Multimodal tasks define ground truth not by fixed labels, but through pairwise relationships between
instances from two modalities, X and Y . Each data instance is typically represented as a positive pair
(x, y), e.g., an image and its corresponding text description. In contrast to unimodal settings where
label sets are fixed and pre-defined, the space of possible instances in each modality is open-ended
and inherently ambiguous. Moreover, adding a new multimodal pair (x, y) to the dataset can induce
additional implicit relationships with existing instances. For example, adding a new caption “photo”
to an image-caption dataset introduces plausible matches not just with one image, but potentially
with all photographic images in the dataset – See Fig. 1 (b). This combinatorial nature of cross-modal
alignment implies that the number of meaningful relationships can grow quadratically with the dataset
size. In practice, each instance x is often associated with multiple valid counterparts in the other
modality, i.e., |y : (x, y) ∈ R| ≥ 1, due to structural properties of multimodal data.

Property 1. Intra-modal variability. Assume a data generation process (e.g., structural causal
models [16]) from the underlying “concepts” to the actual data. For example, assume visual and
textual instances generated from concepts “grey cat”, “santa hat”, and “striped rug” as shown in Fig. 2
(b). This generation process is inherently stochastic, with no uniquely determined instance. Namely,
each modality realizes the concepts in various shapes, e.g., images with slightly different views or
backgrounds, and diverse captions describing the same situation – See Fig. 2 (a). Namely, if there
exist two semantically similar multimodal pairs with overlapping concepts (x1, y1) and (x2, y2),
their cross-relationships (x1, y2) and (x2, y1) also should be positive even though they are treated as
negative in the dataset. This problem becomes significant when we restrict the possible objects in
the datasets and the data format (e.g., COCO Caption [10] is built upon COCO [17] images of 80
common objects). Chun et al. [18] showed that COCO Caption contains many redundant captions,
which results in false negatives (FNs) in the dataset; the average number of plausible human-verified
positive images/captions for each caption/image is 8.5/17.9 (originally 1/5, respectively).
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Property 2. Asymmetry between modalities. Modalities differ in how they encode and express
information. For example, a photograph exhaustively records visual details, while a human-written
caption selectively conveys only a few salient concepts. Although the same concept may appear
in both modalities in varied forms, their information density differs significantly, especially in text,
which reflects human cognition rather than sensor-based input. Theories from cognition, such as
dual-coding theory [19] suggest that the mind processes information along verbal and nonverbal
systems. When a person writes “a grey cat wearing a Santa hat” the verbal code is followed by
a private visual image that may include additional details (background, action) never lexicalized.
Different annotators, therefore, generate distinct but equally valid sentences for the same scene, and a
single sentence can evoke multiple mental images, immediately yielding many-to-many alignments.
Even sensor inputs have different information density by the choice of the sensor. For example, visual
inputs captured by RGB, RGB-D, non-visible light, video camera, and motion sensors have different
information from each other; the same scene will be expressed differently by the sensors.

Property 3. Task-dependent alignment. What counts as a correct alignment often depends on
the task. For example, in vision-language tasks, should a caption describe only the main object in
the image [10]? Should it exhaustively describe all the local visual information [20]? Infer what
happened before and what happens next [21]? In audio-visual settings in Fig. 2 (c), the notion of
alignment could range from on-screen sounds (e.g., cat meowing sound) [22], off-screen sounds (e.g.,
TV sound), talking speech following lip movement [23], or ambient sounds (e.g., funny music or
foley effects) [24]. Namely, the definition of a “positive” pair is ambiguous, context-sensitive, and
task-dependent; if a pair is positive for a specific task, the pair could not be positive for another type
of task (e.g., ambient sounds could be negative if we only focus on on-screen sounds).

Overall, the nature of multimodal correspondences is inherently many-to-many. In the following
sections, we examine how this multiplicity impacts data collection, model training, and evaluation.

3 Multiplicity in training

3.1 How multiplicity induces ambiguity in multimodal matching?

Mainstream multimodal architectures [25, 1, 26, 27] typically assume a one-to-one mapping, i.e., each
instance is encoded into a unique representation vector. However, multimodal inputs are inherently
polysemous: a single instance can correspond to multiple valid interpretations or alignments, each
deserving a distinct representation. If we assume an ideal dataset that annotates all plausible matches
as positives, this multiplicity cannot be faithfully captured by one-to-one encodings. For example, as
illustrated in Fig. 3 (a), a cat image should simultaneously match multiple captions with different
meanings, which is fundamentally impossible by a one-to-one mapping. This introduces input
ambiguity, or aleatoric uncertainty; an input, namely, an input, can be represented in various ways.

In practice, most multimodal datasets [20, 28, 29, 30, 31, 32] consist of one-to-one mapping, be-
cause a perfect dataset is infeasible due to annotation costs. However, considering that multimodal
correspondences are inherently many-to-many, false negatives (plausible but unannotated matches)
naturally emerges. While each input has only one “ground truth” (hence, the input-level ambiguity
disappears), the ambiguity still exists at the level of pairwise relationships. In this case, models suffer
from matching ambiguity: a given correspondence between an instance in one modality and another
can be either positive or negative. This is another form of aleatoric uncertainty, not over the inputs
themselves but over their cross-modal alignments. We examine how matching ambiguity arises.

As discussed in Section 2 intra-modal variability, multiple semantically similar items often exist
within each modality. When we approximate such items (e.g., images of the same object in different
views, or captions describing the same scene with varying detail) into a single representation (by
assuming that the encoder maps similar inputs into a very close and almost the same space), the
resulting cross-modal matching becomes intrinsically ambiguous. Fig. 3 (b) illustrates the overview.

Formally, suppose {x1, x2, . . . , xK} ⊂ X are semantically equivalent inputs, approximated as a
single representative x̃. Let {y1, . . . , yK} ⊂ Y be their corresponding instances from another
modality and the positive relationships r are {r : (xi, yi) ∈ R}. Assume we randomly sample
(xi, yj) from the mini-batch {(xi, yi) | i = 1 . . .K}. Then, the matching label m between x̃ and yj
becomes a stochastic variable: m(x̃, yj) = m(xi, yj) = 1 if i = j and 0 otherwise. If we assume
that y is approximated as ỹ, the probability to have positive matching between x̃ and ỹ will be 1/K.
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By approximating the visual embeddings
as the same embedding point x , the match
becomes “ambiguous”

A person on a
snowboard jumping

up in the air.

y1

x y1
~

x1 y1

x2 y1

x3 y1

~

positive match
negative match

(b) Multiplicity induces “matching ambiguity”(a) Multiplicity introduces “input ambiguity”

“A relaxed cat sitting on a chair”

“An adorable and fluffy cat”

Figure 3: Multiplicity induces ambiguity. (a) If we have an ideal dataset consists of the full pairwise
annotations, an input should correspond to multiple instances from the other modality. The current one-to-one
paradigm cannot handle this. (b) In practice, we have sparsely annotated pairwise annotations: each input only
corresponds to one instance. In this case, multiplicity introduces a new uncertainty, named matching ambiguity.

Recap of current multimodal learning training algorithms. Modern multimodal learning heavily
relies on training objectives that assume well-defined, one-to-one multimodal correspondences.
Approaches such as triplet loss with hard negative mining [33, 34], contrastive learning [1, 27],
pairwise matching [25, 26], and instruction tuning [4] all follow a similar principle: bring positive
pairs closer while pushing negatives apart. They work under the assumption that each input has
a single, correct counterpart in the other modality. When this assumption fails due to the input
ambiguity or matching ambiguity, the model is penalized for preserving the correct semantic structure.
This misalignment leads to undesirable outcomes: (1) distances between semantically compatible
items become exaggerated, and (2) models may overfit to arbitrary choices among positive matches by
disrupting the stability of gradient signals, especially when only one ground-truth is used in training.

Settings. Let x ∈ X and y ∈ Y be items from two modalities. Each mini-batch contains N
instances, with N annotated positive pair {(xi, yi) | i = 1 . . . N}. Without loss of generality, We
suppose that x1 actually has K > 1 equally valid matches in the mini-batch: y+ = {y | y1, . . . , yK}.
In this case, the total number of true positive relations is N −K +K2, whereas the dataset may only
annotate N of them as positive, leaving K2 −K relations unobserved and thus treated as negatives,
i.e., false negatives (FNs). Let f(x) and g(y) denote the normalized embedding by encoders f and g.

Contrastive loss. Let pj :=
exp(f(x1)

⊤g(yj))∑N
k=1 exp(f(x1)⊤g(yk))

, the softmax probability that x1 and yj are
matched. For x1, the original contrastive loss (i.e., only considering N positives) is defined by
Lsparse = − log pi and its gradient w.r.t. f(x1) is ∇f(x1)Lsparse =

∑N
j=1 pjg(yj) − g(y1); this

gradient becomes 0 when p1 = 1, namely, pushing f(x1) and f(y1) closer while pull f(x1) away
from all other f(yj). However, if we suppose that x1 has K > 1 actually valid positives but
unannotated y+. Then, the gradient pulls f(x1) away from g(y+) despite their semantic similarity.

In contrast, an ideal loss considering all positives uniformly account for all K positives: Lideal =∑K
j=1(−

1
K log pj). Let p∗j = 1

K for j = 1 . . .K and 0 otherwise. Then, the gradient of Lideal w.r.t.

x1 becomes: ∇f(x1)Lideal =
∑N

j=1 pijg(yj)−
∑N

j=1 p
∗
jg(yj); this gradient becomes 0 when pj =

1
K

for all j = 1 . . .K. More specifically, the discrepancy between the actual and ideal gradients becomes∑N
j=1(pj − p∗j )g(yj). This mismatch makes the distance between x1 and its plausible matching

y+ larger; despite x1 and y+ being actually positive, there exists a gap between the two modalities,
which can lead to the modality gap problem [35]. As K increases, this mismatch amplifies, leading
to slower convergence [36] and greater semantic fragmentation in the learned embeddings.

Hard negative mining (HNM). HNM is a widely used technique in multimodal metric learning to
accelerate training by focusing on the most challenging negatives [33, 34]. However, it is particularly
vulnerable to FNs when their similarity f(xi)

⊤g(y+) is comparable to that of the true positive
f(xi)

⊤g(y1). In this case, HNM aggressively pushes f(xi) away from g(y+), often more strongly
than contrastive learning, resulting in a distorted embedding space that violates semantic consistency.
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3.2 Current attempts and future directions

Despite its significance, the impact of multiplicity during training remains underexplored, particularly
in large-scale settings such as vision-language embeddings [1, 27] or multimodal LLMs [4]. Several
attempts have been made using a smooth loss [37], pseudo-label [38, 39], or mixed label [39] using
mixing augmentations [40, 41], but their impacts are yet limited. While smaller-scale datasets [10]
have been used to study the issue, existing approaches show limited scalability and generalizability.

One line of work treats multimodal alignments as noisy correspondence (NC) [42] (i.e., considering
that a specific portion of “positive” and “negative” annotations are noisy), leveraging techniques from
learning with noisy labels [43]. However, this approach has shown limited success in large-scale
settings; for example, Chun [39] reported that this direction shows negligible benefits over standard
contrastive learning. Moreover, architectures and training objectives for NC still assumes one-to-
one correspondence, limiting in representing inherent input ambiguity. Nonethelese, rethinking a
multimodal task with sparsely annotated many-to-many pairwise datasets as learning with noisy
labels [43] or positive-unlabeled learning [44] will be an interesting future research direction.

Another direction focuses on producing multiple embeddings, rather than single embedding for each
instance [45, 46], where an instance is mapped to a set of representations to capture polysemous
context, and similarity is defined via set-to-set relationships. This method assumes a fixed number
of latent components per input (e.g., two embeddings for each instance), each intended to capture
a distinct concept. While this direction conceptually fits with both input uncertainty and matching
uncertainty, it lacks flexibility when there exists more concepts than the pre-defined components and
remains unproven at scale. Conceptually, mixture-of-experts (MoE) [47, 48] can be an alternative of
this direction, but the link between MoE and multiplicity is still underexplored.

Probabilistic embeddings [18, 49, 50, 39, 51, 52] offer a more scalable alternative by modeling each
instance as a probabilistic distribution, thereby naturally capturing uncertainty in both representation
and alignment. This family of methods has been extended to large-scale VL models [52, 53], achieving
performance competitive with CLIP [1]. Nonetheless, the empirical gains from probabilistic modeling
remain modest in real-world applications, and their practical utility is still subject to debate.

Despite these directions, the field lacks a unified framework that systematically addresses multiplicity
in multimodal training. This paper encourages rethinking multimodal training, including architecture,
representation space, and training objectives, with the inherent input and matching uncertainties.

4 Multiplicity in evaluation

4.1 When and how Multiplicity makes multimodal benchmarks unreliable?

Multimodal models are often evaluated by one of the following approaches: (1) zero-shot evaluation
by defining tasks via modality-specific information; (2) cross-modal retrieval, where the goal is to
retrieve corresponding items across modalities (e.g., image-to-text, text-to-audio); and (3) evaluation
of generated outputs, such as captioning, audio synthesis, or robotic action plans. Multiplicity can
arise unreliability to the benchmark under some scenarios. Specifically, cross-modal retrieval and
generation evaluation are fundamentally vulnerable to multiplicity and its corresponding FN problem.
Zero-shot tasks are relatively robust to this problem but we need a careful task definition.

Zero-shot evaluation defines tasks using modality-specific information (mostly based on textual
description). For example, language-driven models perform zero-shot classification tasks by treating
class labels as textual descriptions and performing classification via cross-modal similarity [1]. As
another example, vision-language-action (VLA) models perform tasks based on text instruction
sets, and evaluate the plan success rate [6]. This paradigm relaxes the pre-defined and fixed task
condition by modality-specific information (mostly based on text descriptions, but not mandatory to
be language – e.g., task can be defined by audio, such as speech [54]). While zero-shot classification
can sometimes avoid the pitfalls of multiplicity, this is largely contingent on how the label space
is constructed. If class labels are distinct and mutually exclusive, the evaluation remains stable.
However, in the case of taxonomic hierarchies (e.g., “Cat” vs. “Russian Blue”) or lexical ambiguity
(e.g., “laptop computer” vs. “notebook computer” in ImageNet classes [55]), the presence of multiple
valid labels per instance challenges the assumption of single-label correctness [13, 14, 15]. To make
zero-shot evaluation more reliable, the task should be carefully designed considering multiplicity.
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Query caption: “A train on a train track near many trees” R@1 R@5 mAP@R HP

0 100 68.6 70.0

100 100 11.1 10.7

0 0 14.1 13.2

0 100 2.2 4.9

(A)

(B)

(C)

(D)

Figure 4: Human preference vs. evaluation metrics under multiplicity. Chun et al. [56] asked human
annotators to compare four retrieval scenarios: (A) only top-1 is wrong, (B) only top-1 is correct, (C) top-1 to
top-5 are wrong, and (D) only top-5 is correct. By comparing them in pairwise, the human preference (HP) score
is computed by the BT model [64]. mAP@R [57] is highly correlated to HP, while R@Ks are often irrelevant.

In contrast, cross-modal retrieval is directly and severely impacted by multiplicity. Multiplicity
inherently leads to false negatives (FNs), while most datasets assume a single correct target for each
query. However, as the number of matches grows quadratically, it is infeasible to densely annotate all
the possible matches between two modalities. Specifically, when a dataset is built upon limited objects
(e.g., 80 common objects) and a fixed format (e.g., describing the main object), cross-modal retrieval
results are often unreliable. For instance, the ECCV Caption benchmark [56] demonstrates that a
significant portion of COCO Caption [10] treated as negatives are in fact semantically correct for
human annotators (≈ ×4.4 positive matches than the original dataset). Furthermore, if we consider
multiple positives for each query, evaluation metric also matters in cross-modal retrieval benchmarks;
the convention is Recall@K (R@K), but it is often misaligned to human perception.

Most cross-modal retrieval benchmarks assume that each query corresponds to exactly one positive
target. This leads to the widespread use of R@K, which simply check whether the positive appears
within the top-K retrieved items. However, previous studies [57, 56] have shown that R@K is not
only less informative than ranking-based metrics such as mAP@R (where R denotes the number of
positives), but can also be misleading. In particular, R@K ignores the overall ranking quality and
fails to reward models that retrieve multiple semantically appropriate items, making it insensitive to
models that produce coherent and diverse outputs – it makes a case when R@K is 100% but mAP@R
is not 100% [57] – See Fig. 4 (B). Furthermore, as shown in Fig. 4, ranking-based metrics offer a
more nuanced and human-aligned perspective [56] – mAP@R and human preference (HP) are highly
correlated than R@K. Unfortunately, enlarging K cannot be a solution; Chun et al. [56] showed
that the rankings by R@K with different Ks are highly correlated each other, while the ranking by
mAP@R is less correlated to them. This indicates that the need of carefully annotated cross-modal
retrieval benchmarks and more reliable evaluation metrics for retrieval benchmarks under multiplicity.

Finally, evaluating generated outputs under multiplicity introduces a different set of challenges.
Generative tasks are inherently open-ended, and the space of plausible outputs is vast and diverse
[58]. Traditional automatic metrics evaluate generated outputs by comparing them to a limited set
of reference outputs [59], typically using surface-level measures like n-gram overlap [60, 61, 62]
or latent-level comparison [63], However, this approach fails to account for the fact that many
semantically appropriate generations may differ from the reference. For example, “a grey cat in
the house” and “a Russian Blue playing inside” are different phrasing but equally valid; automatic
metrics cannot distinguish them. In this setting, multiplicity leads to systematic underestimation of
model quality, as diverse but valid outputs are treated as incorrect. This highlights a fundamental
limitation of current generation-based evaluation protocols in the presence of multimodal ambiguity.

4.2 Current attempts and future directions

The most direct way to address multiplicity in evaluation is to exhaustively annotate all plausible
cross-modal pairs. However, this is infeasible in practice due to the quadratic growth in the number
of possible correspondences. Instead, existing work has explored two main directions.

The first is to automatically identify additional positives using side information such as attributes or
semantic similarity. For instance, PCME [18] introduced densely annotated retrieval benchmarks
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on CUB [65] and COCO [17] datasets with fine-grained attributes and object labels. This approach
helps mitigate FNs and enables to use precision metrics, thanks to the multiple positives per query.
However, it may suffer from false positives, especially when captions refer to scene elements not
captured by the predefined object labels. As another example, Wray et al.. [66] considered semantic
similarity proxies computed on captions (e.g., bag-of-words or part-of-speech overlap) for a more
reliable video retrieval evaluation. This highly relies on the quality of the similarity proxies.

The second direction is to manually annotate a reduced set of candidate pairs, selected via automatic
methods [67, 56]. For example, ECCV Caption [56] used five different retrieval models to select up
to 25 candidate matches per query. Human annotators then verified whether each candidate was a true
match. This is significantly cheaper than full annotation, but still has a risk of FNs if valid matches
are omitted during candidate selection. Also, the scalability of this approach is not promising.

While multiplicity has been relatively actively discussed in retrieval evaluation, its implications are
even less explored in other settings. In generation-based evaluation, human judgment remains the de
facto standard to handle semantic diversity, as automatic metrics often unreliable. Although human
evaluation better reflects real-world diversity, the lack of scalable and reliable automatic metrics
continues to slow progress. In zero-shot tasks, multiplicity can be partially addressed with ideas from
unimodal tasks. Previous works [13, 14, 15] have proposed rethinking single-label benchmarks as
multi-label tasks or refining label sets to reduce ambiguity. Similar strategies could be applied to
zero-shot multimodal evaluation, such as revisiting prompts or category definitions in benchmarks.

Ultimately, a more faithful evaluation framework must explicitly account for the many-to-many nature
of multimodal relationships, both in how relevance is defined and how performance is measured.

5 Multiplicity in dataset construction

5.1 The relationship between the degree of the multiplicity and multimodal dataset quality

Recent studies have shown that multimodal model performance is closely tied to both model and
dataset scale [68]. As traditional dataset construction is labor-intensive (e.g., manual captions written
by human annotators [10]), recent approaches focus on collecting large-scale but noisy multimodal
pairs (typically crawled from the web) and filtering them to remove low-quality examples [28, 31].
Specifically, the existing dataset construction process concentrates on “alignment”, measured by
a lareg-scale pre-trained model [32, 69, 70]. For example, large-scale image-text datasets, such
as LAION-5B [31], discards image-text pairs whose CLIP similarity is smaller than a pre-defined
threshold. This heuristic has become a rule-of-thumb for scalable multimodal dataset construction.

However, as dataset size increases, the strategy that discards or keeps pairs with CLIP similarity
may not be enough. As shown in Fig. 1 (b), adding even a single multimodal pair can influence the
multiplicity structure of the entire dataset. For example, underspecified instances (e.g., “photo” or “a
person is standing”) tend to align with a large number of items (e.g., all general photos or human
figures), amplifying multiplicity – leading to input- and matching-ambiguity as discussed in Section 3.
Several studies [71, 72, 73, 74] attempted to avoid this challenge by training multimodal models
solely with unimodal datasets (e.g., text-only training), but this cannot be a fundamental solution.

Whether a dataset preserves or suppresses this multiplicity depends on design choices of multimodal
pair collection and task definition: retaining only specific, narrowly defined examples may reduce
multiplicity, but this is often infeasible since alignment depends on task-specific semantics. Bringing
VL tasks as an example, we can reduce the potential matches of the given image by describing all the
localized details in the image [20]; this may reduce the multiplicity, but this process is expensive and
sometimes not helpful to general-purpose tasks, such as zero-shot classification. On the other hand, if
we focus on the salient objects in the image [10], the captioning process becomes cheaper, but the
possible matching images per each caption will dramatically increase [56].

5.2 Current attempts and future directions

Despite its importance, multiplicity has received limited attention in the context of dataset construc-
tion. While multiplicity-aware modeling and architecture design may eventually need to account
multiplicity, minimizing unnecessary multiplicity at the dataset level remains a critical and cost-
effective strategy, especially in the current paradigm where scaling-law still holds [1, 2, 68].
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Multiplicity should be considered even before data collection, i.e., starting from task definition.
Cross-modal alignment is inherently task-dependent. Previous works [75, 76] showed that collecting
task-relevant instances improves multimodal training. Without clear criteria for valid matches,
datasets may introduce unintended multiplicity, causing downstream instability.

In addition, a careful multimodal pair collection process will be helpful to reduce the level of
multiplicity. For example, filtering strategies should go beyond coarse alignment scores (e.g., CLIP
similarity) and explicitly target instances that amplify multiplicity (e.g., underspecified inputs). One
possible direction is a filtering based on specificity, such as HYPE [77]. By selecting more specific
instances (defined by the embedding property), HYPE leads to higher-quality datasets and improved
downstream performance. This supports the broader hypothesis that reducing multiplicity at the data
level yields tangible benefits throughout the multimodal pipeline.

6 Discussions

Alternative views. The existence of multiplicity in multimodal learning is no doubt. However, as an
alternative viewpoint, practitioners can argue that multiplicity is a neglectable issue and simply scaling
up the model and dataset under the one-to-one assumption can achieve high-performing multimodal
models. This might be true in the current status; as shown by recent studies [1, 2, 68, 32], scaling
up the models with noisy multimodal pairs looks promising in terms of building strong multimodal
models. However, as observed in the ImageNet classification task, the fundamental flaw in dataset or
task becomes significant when models become very strong. For example, Beyer et al. [13] showed
that ImageNet accuracy can be flawed when it goes beyond 90% due to the wrong labels. We now
have strong multimodal models, but they are not yet sufficiently strong enough as much well-defined
as supervised classifiers. It may not be the correct timing to consider multiplicity for practitioners.
However, this paper argues that despite the multiplicity not being a critical factor of the performance
as of now, it eventually should become a fundamental bottleneck to achieve a superhuman-level
multimodal model because multiplicity is inevitable, and the impact of the multiplicity also exists in
the entire multimodal learning pipeline. Furthermore, the current one-to-one paradigm fundamentally
cannot handle multiplicity; we need a new paradigm for representing multiple different ideas of the
given instance, although it would not be sufficiently effective in benchmark evaluation.

What will be the future direction? This paper has shown that multiplicity is a fundamental and
unavoidable challenge across the entire multimodal learning pipeline. This paper argues that future
multimodal learning research should be reframed around multiplicity. It calls for a novel modeling
beyond one-to-one mapping (e.g., one-to-many mapping [45] or stochastic embeddings [18]). As of
now, stochastic modeling has shown a promising scalability while achieving comparable performance
with large-scale foundation models [52]. Another possible direction is a conditional modeling that
takes additional conditions to specify the given instance, e.g., transforming an embedding with the
given text condition [78], selecting a specific local area in the image [79] or lexically specifying the
characteristic of the corresponding audio from the video [12]. These approaches reduce the ambiguity
of the input by specifying what instance should be matched to the given instance by additional
contexts (e.g., pixel-level mask or text condition). Similarly, compositionality-aware modeling [80]
will be an interesting direction, which models an input as a composition of its parts (or underlying
concepts). By tackling compositionally, we can handle one of the major sources of multiplicity.

Multiplicity also introduces another important challenge, how to construct datasets with multiplicity
in mind. It involves both evaluation and training datasets; while controlling multiplicity in datasets is
the biggest task for both, evaluation datasets are more focused on the hidden pairwise annotations due
to the multiplicity, and training datasets aims to reduce the multiplicity in the dataset. One promising
direction is to design scalable dataset construction protocols that explicitly minimize structural
multiplicity. This will be an important goal for both reliable evaluation and stable training. In the
long term, we may also need an iterative development cycle for multimodal systems that includes
dataset collection, filtering, modeling, and evaluation (all under multiplicity-aware framework). As
shown in the unimodal dataset construction [81], such iteration will significantly improve dataset
quality and system robustness over time, despite its inherent complexity.

Multiplicity is not just a minor issue, but it is a core part of how real-world multimodal data works.
To make progress, we need to build datasets, models, and evaluations that take it into account. Only
then can we develop multimodal systems that truly understand the richness of the world.
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