
Presented at ICLR 2019 Debugging Machine Learning Models Workshop

WHERE TO BE ADVERSARIAL PERTURBATIONS
ADDED? INVESTIGATING AND MANIPULATING PIXEL
ROBUSTNESS USING INPUT GRADIENTS

Jisung Hwang∗†
University of Chicago
jeshwang92@uchicago.edu

Younghoon Kim∗†
KC Machine Learning Lab
kyhoon@kc-ml2.com

Sanghyuk Chun† , Jaejun Yoo, Ji-Hoon Kim & Dongyoon Han
Clova AI Research, NAVER Corp.
{sanghyuk.c, jaejun.yoo, genesis.kim, dongyoon.han}@navercorp.com

ABSTRACT

This paper addresses the robustness of deep neural networks (DNNs) in respect of
the network input. When imposing an input perturbation by an adversarial attack,
it is hard to tell which pixels in the input are weak to the adversarial perturba-
tion. We conjecture that the pixels with large expected input gradient are common
weak points regardless of the input images. Based on our observation, we propose
a simple module referred to Pixel Robustness Manipulator (PRM). By adding a
PRM module as the first layer of a base network, the pre-determined (or planned)
pixels become general weak points against adversarial attacks. This is done by in-
ducing the adversarial perturbations to the predictable and interpretable locations
by PRM, we can easily manage the location, where adversarial perturbations will
affect on. Additionally, to show the effectiveness of PRM, we propose a simple
defense strategy under a weak attack scenario, where the adversary knows the full
parameters while has no information about the defense strategy.

1 INTRODUCTION

Adversarial attacks based on iterative optimization (Carlini & Wagner, 2016; Madry et al., 2017)
have been emerged to evaluate the robustness of a neural network model. By adding a small pertur-
bation to the input image iteratively (i.e., using the gradients of the input), it has been shown that
generated adversarial samples can successfully fool the targeted trained neural network. A popular
method of Projected Gradient Descent (PGD) (Madry et al., 2017) iteratively generates adversarial
examples as

xt+1 = clipε

[
xt + α

∇xtL(θ, xt, y)

‖∇xtL(θ, xt, y)‖p

]
, (1)

where clipε denotes a clip operation with small ε, ‖ · ‖p denotes the vector `p norm (e.g., `2 norm
and `∞ norm). Using equation 1 for imperceptible pixel perturbations, the robustness of a model
including the adversarial training (Szegedy et al., 2013; Huang et al., 2015; Goodfellow et al., 2014;
Madry et al., 2017; Cisse et al., 2017; Wong & Kolter, 2018) has been widely studied. On the other
hand, understanding the model robustness with respect to the input domain has been overlooked.
There have been a few works (Papernot et al., 2016; Su et al., 2017; Cao & Gong, 2017; Prakash
et al., 2018) that directly tackle the model robustness in the input domain. However, they are difficult
to be generalized to different model structures, datasets, and attack methods. In addition, they often
require heavy pre-processing computations.
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In this work, we investigate whether the underlying pixels are vulnerable or not, which is determined
solely by the model of interest. However, because adversarial perturbations are generated dependent
on a given image, it is difficult to find pixels that are generally weak. Here, we conjecture that
pixels with large expected input gradient are general weak points. We first measure the robustness
of pixels by using the expected input gradients. Next, we empirically back up that the proposed
expected input gradient is a good proxy of measuring the robustness of pixels regardless of model
structures and attack methods. Moreover, we show that by adding a simple module called Pixel
Robustness Manipulator (PRM), to the network input stage, the robust pixel domains are easily
moved to the designated pixels under a weak attack scenario.

2 MEASURING PIXEL ROBUSTNESS USING EXPECTED INPUT GRADIENTS

In this section, we propose a simple technique to estimate the pixel robustness by using the expected
input gradients for each pixel effectively. A simplistic way of doing this is to take the perturbed
images by using equation 1 directly. However, perturbed pixels are highly related to the input
gradient (i.e., gradient of xt, ∇xtL(θ, xt, y)) which has a dependency on the t-th input xt. Hence,
it is hard to find general pixels which are weak or robust to adversarial perturbations. Moreover,
because it clips the perturbation with small ε after normalizing the gradient by its `p norm, the
intensity of the gradients often becomes irrelevant to the adversarial attack especially when p =∞.

Instead of using the input gradient directly, we compute the expectation with respect to the absolute
value of the input gradient term so that measuring pixel robustness becomes image-agnostic:

g(i, j) =
1

K|X |
∑
x∈X

K∑
k=1

∣∣∣∣∂L(θ, x, y)∂xijk

∣∣∣∣ , (2)

where xijk is an input pixel value where i, j and k are the indices of xy-coordinates and channel,
respectively. K denotes the number of image channels (i.e., for RGB image, K = 3), L denotes a
loss function, and θ denotes model parameters. Note that g(i, j) only depends on the model structure
θ but not on the data distribution. We conjecture that pixels with large g(i, j) tend to be weak against
adversarial perturbations while pixels with small g(i, j) tend to be robust.
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Figure 1: Top-1 accuracy (%) on ImageNet validation datasets after masked adversarial attacks using
Mt(p) (red line) and Mb(p) (blue line) for ResNet-101, VGG-19 and DenseNet-121.
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To show that the pixel robustness is related to the extent of g(i, j), we generate a binary mask
M ∈ {0, 1}w×h, where w and h denote width and height of an image x, respectively. Given
M , we test the base network with the input x = (1 − M) � xo + M � xa, where xo and xa
denote the original input and attacked input. We introduce two types of masks Mt(p) and Mb(p)
by setting pixel values as 1 in the top p percentage of g(i, j) and the bottom p percentage of g(i, j),
respectively. To generate the attacked image xa, we use PGD using `2 and `∞ normalization with
1, 000 iterations with ε = 0.031, which is the same setting used in Athalye et al. (2018). We report
the top-1 accuracy on ImageNet validation dataset (Deng et al., 2009) after two types of masked
attacks with varying p to ResNet-101 (He et al., 2016), VGG-19 (Simonyan & Zisserman, 2015)
and DenseNet-121 (Huang et al., 2017) in Figure 1.

Figure 1 shows that the pixels with large g(i, j) are vulnerable to adversarial perturbation while the
pixels with small g(i, j) are robust. The observation empirically supports that our proposed measure
g(i, j) is an appropriate proxy measure of pixel robustness that is independent of the input images,
model structures, and the type of norm chosen by the PGD adversary.

3 MANIPULATING PIXEL ROBUSTNESS

3.1 PIXEL ROBUSTNESS MANIPULATOR

Input (X)
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Figure 2: Overview of PRM manipulating the vulnerable pixels to align on checkerboard pattern.
We use a standard U-Net (Ronneberger et al., 2015) structure with first layer with the kernel size
of (1, 1) and the stride of (2, 2). The manipulated gradient patterns by the proposed module for
different models are illustrated in figure 3.

In Section 2, we have shown that the pixel robustness can be estimated by equation 2. Interestingly,
the derivative part in equation 2 is strongly correlated with sparsely connected layer in a network
due to the chain rule in the back propagation. From the observation, we conjecture that the general
weak points against adversarial attacks could be manipulated to the pre-defined locations regardless
of network structures by manufacturing the connectivity between pixels and the network. To support
this, we show that the pixels corresponding to large gradients (i.e., vulnerable pixels) become aligned
to the target pixels by manufacturing the connectivity between pixels and the network.

Specifically, we propose a simple auxiliary module called Pixel Robustness Manipulator (PRM) that
manipulates the locations of general weak points. By plugging a PRM module into the base network
(i.e., just after the input), the pixel robustness can be manipulated. The details of our proposed PRM
module are illustrated in Figure 2. We first train a convolutional auto-encoder with a skip connection
where the first layer of the encoder is partially connected to the designated pixels. For example, if
we set kernel size and the stride of the first convolution as (1, 1) and (2, 2), respectively, the first
layer is only connected with the pixels of even coordinates. The weighting parameter λ ∈ [0, 1]
adjusts the sparse connection between input images and reconstructed images. By setting λ = 0.0,
the output of PRM is exactly same as the original image while the output of PRM, when λ = 1.0
uses only sparse connections. For the experiments, we design a PRM module to have the kernel size
and the stride of the first convolutional layer as (1, 1) and (2, 2) respectively. The PRM module is
trained on ImageNet dataset with a reconstruction loss.

We report the top-1 validation accuracy on ImageNet dataset along with the intersection over union
(IoU) between our designated pixels (i.e., checkerboard) and pixels of top 25% g(i, j) by varying
the weight of the skip connection λ in Table 1. Regardless of the base model, there is only a small
decrease in the accuracy even with a large λ while the pattern of pixel robustness gradually coincide
with the desired pixels. In addition, we report the original gradient heatmaps and pixels of top 25%
g(i, j) according to λ in figure 3. As reported in Table 1 and Figure 3, the robust and vulnerable
pixels are almost aligned to the designated locations with small enough λ (e.g., 0.4).
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Table 1: Top-1 accuracy (%) on ImageNet dataset and Intersection over Union (IoU) with the des-
ignated pixels (i.e., checkerboard) and 25% masks with varying λ’s. Note that λ = 0.0 equals to the
base network and λ = 1.0 equals to the base netowork with a PRM module without skip connection.

λ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Acc (%)
ResNet 77.4 77.3 77.2 76.8 76.3 75.5 74.7 73.5 72.1 70.5 69.1
VGG 72.4 72.3 72.1 71.8 71.3 70.4 69.1 67.5 65.8 63.7 61.8

DenseNet 74.4 74.2 73.9 73.6 73.1 72.4 71.6 70.5 69.3 68 66.8

IoU (%)
ResNet 12.5 25.3 49.7 80.3 93.1 96.4 99.5 100 100 100 100
VGG 14.3 25.1 52.6 91.8 94.8 96.5 99.0 100 100 100 100

DenseNet 13.2 37.7 82.5 93.1 94.7 99.9 100 100 100 100 100

(a) ResNet λ = 0.0 λ = 0.2 λ = 0.4 λ = 0.6 λ = 1.0

(b) VGG λ = 0.0 λ = 0.2 λ = 0.4 λ = 0.6 λ = 1.0

(c) DenseNet λ = 0.0 λ = 0.2 λ = 0.4 λ = 0.6 λ = 1.0

Figure 3: Input gradient and masks after plugging a PRM module in front of the network. Note that
regardless of the base model, the PRM module almost aligns the robust and vulnerable pixels to the
desired pixels even with a small enough λ (e.g., 0.4).

3.2 EVALUATING EFFECTIVENESS OF PRM IN A WEAK ATTACK SCENARIO

Here, we propose a simple defense method using PRM against adversarial attacks. We assume
that the adversary knows the network parameter but has no information about the defense strategy.
Similar scenarios were employed to a number of previous works (Cao & Gong, 2017; Xie et al.,
2017; Prakash et al., 2018). Our scenario is neither white-box nor black-box because the adversary
knows the full model parameter without knowing how the defense mechanism works.

Under the attack scenario, the adversary generates perturbations using the given network parameters.
Interestingly, as a PRM module is plugged in front of the base network, the adversarial perturbations
could be moved to the robust pixels by shifting the image just a single pixel in the evaluation stage.
As illustrated in Figure 3, our module can manipulate the pattern of the pixel robustness to the
desired pixels regardless of the base network.

We report the top-1 accuracy on CIFAR-10, CIFAR-100 and ImageNet dataset after performing var-
ious attack methods including One Pixel attack (Su et al., 2017), JSMA (Papernot et al., 2016),
DeepFool (Moosavi-Dezfooli et al., 2016), C&W (Carlini & Wagner, 2016), and PGD (Madry
et al., 2017) `2 attack with 1, 000 iterations to our proposed method and Region-based defense (Cao
& Gong, 2017), Randomization defense (Xie et al., 2017), and Pixel Deflection defense (Prakash
et al., 2018) in table 2. For the base network, we employ ResNet-18 for CIFAR experiments and
ResNet-101 for ImageNet experiments. In ResNet-18 experiments, we finetune the model with
a RPM module. All the experiments are done with NAVER Smart Machine Learening (NSML)
GPU platform (Sung et al., 2017; Kim et al., 2018). The table shows that even in the weak attack
scenario, the previous defense methods are easily broken while ours can defend the adversarial at-
tacks successfully. Additionally, because our proposed module manipulates the pixel robustness in a
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Table 2: Top-1 accuracy (%) of four defense methods against five attack methods on CIFAR-10,
CIFAR-100 and ImageNet datasets. Boldface denotes the highest top-1 accuracy after defense.

Method CIFAR-10 CIFAR-100 ImageNet
OP JSMA DF CW PGD OP JSMA DF CW PGD PGD

Region. 65.1 6.3 78.0 7.6 0.0 50.0 17.3 67.9 6.5 0.1 0.0
Random. 76.9 72.6 84.4 74.7 1.5 51.3 21.7 56.9 39.1 0.3 11.1
Pixel Def. 60.7 48.7 71.9 66.7 10.6 41.1 22.0 54.0 48.4 7.2 20.9

Ours 89.0 89.5 89.5 89.4 89.5 65.0 65.6 65.7 65.7 65.7 68.8
Model ResNet-18 ResNet-18 ResNet-101
(Acc.) (94.6) (73.6) (77.4)

network-agnostic way, our proposed module can be applied universally without any additional pre-
processings or training techniques compared with the methods with additional computational costs
of Region-based (Cao & Gong, 2017) and Pixel Deflection (Prakash et al., 2018). Our method evades
adversarial perturbation with high interpretability while fully randomized resizing and padding by
Randomization (Xie et al., 2017) is hard to interpret why it works.

Our future work is to make our proposed method be robust to adaptive attack scenarios. We will
employ a randomization defense strategy by using various PRM modules, patterns generated by
PRM modules (e.g., checkerboard, row-by-row, and column-by-column), and base networks.
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