2210.11407v4 [cs.LG] 17 Jul 2024

arxXiv

Similarity of Neural Architectures
using Adversarial Attack Transferability

Jaehui Hwang’?" Dongyoon Han?

Byeongho Heo® Song Park®

Sanghyuk Chun®* Jong-Seok Leel:?*

! School of Integrated Technology, Yonsei University
2BK21 Graduate Program in Intelligent Semiconductor Technology, Yonsei University
NAVER AI Lab

t Works done during an internship at NAVER AI Lab. * Corresponding authors

Abstract. In recent years, many deep neural architectures have been
developed for image classification. Whether they are similar or dissimi-
lar and what factors contribute to their (dis)similarities remains curious.
To address this question, we aim to design a quantitative and scalable
similarity measure between neural architectures. We propose Similarity
by Attack Transferability (SAT) from the observation that adversarial
attack transferability contains information related to input gradients and
decision boundaries widely used to understand model behaviors. We con-
duct a large-scale analysis on 69 state-of-the-art ImageNet classifiers us-
ing our SAT to answer the question. In addition, we provide interesting
insights into ML applications using multiple models, such as model en-
semble and knowledge distillation. Our results show that using diverse
neural architectures with distinct components can benefit such scenarios.

Keywords: Architecture Similarity - Adversarial Attack Transferability

1 Introduction

The advances in deep neural networks
(DNN) architecture design have taken a
key role in their success by making the
learning process easier (e.g., normaliza-
tion [3, 52, 116] or skip connection [42]),
enforcing human inductive bias [60], or in-
creasing model capability with the self-
attention mechanism [106]. With different
architectural components containing ar-
chitectural design principles and elements,
a number of different neural architectures
have been proposed. They have differ-
ent accuracies, but several researches have
pointed out that their predictions are not
significantly different [35, 71, 72].

1.DelT-B
@1.VIlB
| TN
3. PiT-S °
o L]
@ 3. XCT-T12
LY °
4. HaloNet-50 @© @ 4. BoTNet-26
L]
@7- RegNety-32

°
7. ReXNet (x1.5)

9. ResNet-1 on!}. RegNetX-320x
° ° @8- NFNet-L0
@8- ResNest50
[]
o® ® 6ResNetv250
o0 ®
6.ResNet-50

Fig. 1: t-SNE plot showing 10 clus-
ters of 69 neural networks using
our similarity function, SAT.

2 J. Hwang et al.

By this, can we say that recently developed DNN models with different archi-
tectural components are similar or the same? The answer is no. It is because
a model prediction is not the only characteristic to compare their similarities.
Existing studies have found differences by focusing on different features, such
as layer-by-layer network component [58, 82], a high-level understanding by vi-
sualization of loss surface [28], input gradient [89, 91], and decision boundary
[90]. Researchers could understand the similarity between models through these
trials; however, the similarity comparison methods from previous studies are in-
sufficient for facilitating comprehensive studies because they do not satisfy two
criteria that practical metrics should meet: (1) providing a quantitative similar-
ity score and (2) being compatible with different base architectures (e.g., CNN
and Transformer). Recently, Trameér et al. [103] and Somepalli et al. [90] sug-
gested a quantitative similarity metric based on measuring differences in decision
boundaries. However, these methods have limitations due to the non-tractable
decision boundaries and limited computations as shown in Sec. 3.

We propose a quantitative similarity that is scalable and easily applicable
to diverse architectures, named Similarity by Attack Transferability (SAT). We
focus on adversarial attack transferability (AT), which indicates how generated
adversarial perturbation is transferable between two different architectures. It is
widely studied that the vulnerability of DNNs depends on their own architectural
property or how models capture the features from inputs, such as the usage
of self-attention [33], the stem layer [50], and the dependency on high or low-
frequency components of input [4, 57]. Thus, if two different models are similar,
the AT between the models is high because they share similar vulnerability
[84]. Furthermore, AT can be a reliable approximation for comparing the input
gradients [70], decision boundary [56], and loss landscape [26]. All of them are
widely-used frameworks to understand model behavior and differences between
models and used to measure the similarity of models in previous works [6, 18, 28,
64, 89, 90, 91, 94, 103, 113]; namely, SAT can capture various model properties.

We quantitatively measure pairwise SATs of 69 different ImageNet-trained
neural architectures from [114]. We analyze what components among 13 archi-
tectural components (e.g., normalization, activation, ...) that consist of neural
architectures largely affect model diversity. Furthermore, we observe relation-
ships between SAT and practical applications, such as ensemble and distillation.

2 Related Work

Similarity between DINNs has been actively explored recently. Several studies
focused on comparing intermediate features to understand the behavior of DNNs.
Raghu et al. [82] observed the difference between layers, training methods, and
architectures (e.g., CNN and ViT) based on layer-by-layer comparison [5§].
Some studies have focused on loss landscapes by visualizing the loss of models
on the parameter space [28, 64, 78]. Although these methods show a visual
inspection, they cannot support quantitative measurements. On the other hand,
our goal is to support a quantitative similarity by SAT.

Similarity of Neural Architectures using Adversarial Attack Transferability 3

Another line of research has been focused on prediction-based statistics,
e.g., comparing wrong and correct predictions [34, 35, 61, 86]. However, as recent
complex DNNs are getting almost perfect, just focusing on prediction values can
be misleading; Meding et al. [72] observed that recent DNNs show highly similar
predictions. In this case, prediction-based methods will be no more informative.
Meanwhile, our SAT can provide meaningful findings for 69 recent NNs.

Input gradient is another popular framework to understand model behavior
by observing how a model will change predictions by local pixel changes |6,
88, 89, 91, 94]. If two models are similar, their input gradients will also be
similar. These methods are computationally efficient, and no additional training
is required; they can provide a visual understanding of the given input. However,
input gradients are inherently noisy; thus, these methods will need additional
pre-processing, such as smoothing, for a stable computation [18]. Also, these
methods usually measure how the input gradient matches the actual foreground,
i.e., we need ground-truth foreground masks for measuring such scores. On the
contrary, SAT needs no additional pre-processing and mask annotations.

Comparing the decision boundaries will provide a high-level understand-
ing of how models behave differently for input changes and how models extract
features from complicated data dimensions. Recent works [103, 113] suggested
measuring similarity by comparing distances between predictions and decision
boundaries. Meanwhile, Somepalli et al. [90] analyzed models by comparing
their decision boundaries on the on-manifold plane constructed by three ran-
dom images. However, these approaches suffer from inaccurate approximation,
non-tractable decision boundaries, and finite pairs of inputs and predictions.

Finally, different behaviors of CNNs and Transformers have been studied in
specific tasks, such as robustness [5, 74], layer-by-layer comparison [78, 82] or
decision-making process [53]. Our work aims to quantify the similarity between
general NNs, not only focusing on limited groups of architecture.

3 Similarity by Attack Transferability (SAT)

Here, we propose a quantitative similarity between two architectures using ad-
versarial attack transferability, which indicates whether an adversarial sample
from a model can fool another model. The concept of adversarial attack has ef-
fectively pointed out the vulnerabilities of DNNs by input gradient [36, 70, 95].
Interestingly, these vulnerabilities have been observed to be intricately linked
to architectural properties. For example, Fu et al. [33] demonstrated the effect
of the attention modules in architecture on attack success rate. Hwang et al. [50]
analyzed that the stem layer structure causes models to have different adver-
sarial vulnerable points in the input space, e.g., video models periodically have
vulnerable frames, such as every four frames. Namely, an adversarial sample to
a model highly depends on the inherent architectural property of the model.
Another perspective emphasized the dissimilarities in dependencies on high-
frequency and low-frequency components between CNN-based and transformer-
based models, showing different vulnerabilities to different adversarial attacks

4 J. Hwang et al.

[4, 57]. Different architectural choices behave as different frequency filters (e.g.,
the self-attention works as a low-pass filter, while the convolution works as a
high-pass filter) [78]; thus, we can expect that the different architectural com-
ponent choices will affect the model vulnerability, e.g., vulnerability to high-
frequency perturbations. If we can measure how the adversarial vulnerabilities
of the models are different, we also can measure how the networks are dissimilar.

To measure how model vulnerabilities differ, we employ adversarial at-
tack transferability (AT), where it indicates whether an adversarial sample
from a model can fool another model. If two models are more similar, their
AT gets higher [26, 65, 84]. On the other hand, because the adversarial at-
tack targets vulnerable points varying by architectural components of DNNs
[33, 49, 50, 57], if two different models are dissimilar, the AT between them
gets lower. Furthermore, attack transferability can be a good approximation for
measuring the differences in input gradients [70], decision boundaries [56], and
loss landscape [26], where they are widely used techniques for understanding
model behavior and similarity between models as discussed in the related work
section. While previous approaches are limited to non-quantitative analysis, in-
herent noisy property, and computational costs, adversarial transferability can
provide quantitative measures with low variances and low computational costs.

We propose a new similarity function that utilizes attack transferability,
named Similarity by Attack Transferability (SAT), providing a reliable,
easy-to-conduct, and scalable method for measuring the similarity between neu-
ral architectures. Formally, we generate adversarial samples x 4 and xp of model
A and B for the given input x. Then, we measure the accuracy of model A
using the adversarial sample for model B (called accg_, 4). If A and B are the
same, then accpg_, 4 will be zero if the adversary can fool model B perfectly. On
the other hand, if the input gradients of A and B differ significantly, then the
performance drop will be neglectable because the adversarial sample is almost
similar to the original image (i.e., [|[x — zg|| < ¢). Let X4p be the set of inputs
where both A and B predict correctly, y be the ground truth label, and I(-) be
the indicator function. We measure SAT between two different models by:

1

SAT(A, B) = log | max {&,, 100x
(4, 5) = log [max {e, 100x g)

Y {l(Alws) #y) +1(B(za) #9)} }],

reEXAB
(1)

where ¢, is a small scalar value. If A = B and we have an oracle adversary, then
SAT(A, A) = log100. In practice, a strong adversary (e.g., PGD [70] or Au-
toAttack [23]) can easily achieve a nearly-zero accuracy if a model is not trained
by an adversarial attack-aware strategy [22, 70]. Meanwhile, if the adversarial
attacks on A are not transferable to B and vice versa, then SAT(A, B) = loge,.

Ideally, we aim to define a similarity d between two models with the following
properties: (1) n = argmin,, d(n,m), (2) d(n,m) = d(m,n) and (3) d(n,m) >
d(n,n) if n # m. If the adversary is perfect, then accq_, 4 will be zero, and it
will be the minimum because accuracy is non-negative. “acca_,p + accg_4” is
symmetric thereby SAT is symmetric. Finally, SAT satisfies d(n,m) > d(n,n) if
n # m where it is a weaker condition than (3).

Similarity of Neural Architectures using Adversarial Attack Transferability 5

— decision boundary of model A /

- predictions of model A alattag

R
% p ‘,.' 3}
W] f' . Non-transferred
W ./ sy A \ adv samples
T \ adv sa s
) / V“'\\ \

Fig.2: How SAT works? Conceptual figure to understand SAT by the lens of the
decision boundary. Each line denotes the decision boundary of a binary classification
model, and each dot denotes individual prediction for given inputs.

Comparison with other methods. Here, we compare SAT with prediction-based
measurements [34, 35, 61, 86] and similarity measurements by comparing decision
boundaries (Tramér et al. [103] and Somepalli et al. [90]). We first define two
binary classifiers f and ¢ and their predicted values f,(x) and g,(z) for input =
(See Fig. 2). f classifies x as positive if f,(z) > fq(z) where fi(z) is a decision
boundary of f. We aim to measure the difference between decision boundaries,
namely [|fa(x) — ga(x)|dz to measure differences between models. However,
DNNs have a non-tractable decision boundary function, thus, f; and g4 are not
tractable. Furthermore, the space of x is too large to compute explicitly. Instead,
we may assume that we only have finite and sparingly sampled .

In this scenario, we can choose three strategies. First, we can count the
number of samples whose predicted labels are different for given x, which is
prediction-based measurements or Somepalli et al. [90]. As we assumed sparsity
of x, this approach cannot measure the area of uncovered x domain, hence,
its approximation will be incorrect (purple box in Fig. 2) or needs too many
perturbations to search uncovered x. In Appendix A.1, we empirically show that
Somepalli et al. [90] suffers from the high variance even with a large number of
samples while SAT shows a low variance with a small number of samples.

Second, we can measure the minimum distance between f,(z) and f; as
Tramer et al. [103]. This only measures the distance to its closest decision bound-
ary without considering the other model. The yellow box of Fig. 2 shows if two
predictions are similar at z, it would compute an approximation of | f4(x)—ga(x)|
for . However, if two predictions are different, it will compute a wrong approx-
imation. Moreover, in practice, searching € is unstable and expensive.

Lastly, we can count the number of non-transferred adversarial samples (red
box in Fig. 2), which is our method, SAT. If we have an oracle attack method
that exactly moves the point right beyond the decision boundary, our SAT will
measure the ¢y approximation of min(|fq(z) — ga(x)|,€) for given z. Namely,
SAT can measure whether two decision boundaries are different by more than e
for each z. If we assume that the difference between decision boundaries is not
significantly large and e is properly chosen, SAT will compute an approximated
decision boundary difference. We also compare SAT and other methods from the
viewpoint of stability and practical usability in Sec. 5.1 and Appendix A.

6 J. Hwang et al.

Discussions. In practice, we do not have an oracle attack method. Instead, we
employ the PGD attack [70] as the adversarial attack method. In Appendix B.1,
we investigate the robustness of SAT to the choice of the attack methods. In
summary, SAT measured by PGD shows a high correlation with SAT measured
by various attacks, e.g., AutoAttack [23], attacks designed for enhancing attack
transferability, such as MIFGSM [29] and VMIFGSM [112], low-frequency tar-
geted attacks, such as low-frequency PGD [38], method-specific attacks, such as
PatchPool [33], or generative model-based attacks, such as BIA [129].

Also, SAT assumes an optimal attack with proper e. However, this assump-
tion can be broken under the adversarial training setting when we use a practical
attacker. Also, as shown by Tsipras et al. [105] and Ilyas et al. [51], adversar-
ial training will lead to a different decision boundary from the original model.
In Appendix B.2, we empirically investigate the effect of adversarial training to
SAT. We observe that different adversarial training methods make as a difference
as different training techniques, which we will discuss in Sec. 4.2.

Analyzing 69 models. Now, we analyze 69 recent ImageNet classifiers using SAT
by focusing on two questions. (1) Which network component contributes to the
diversity between models? (2) Why do we need to develop various neural archi-
tectures? The full list of the architectures can be found in Appendix C. We use
the PGD attack [70] for the adversary. We set the iteration to 50, the learning
rate to 0.1, and € to 8/255. As we discussed earlier, we show that SAT is robust
to the choice of the adversarial attack method. We select 69 neural architec-
tures trained on ImageNet [85] from the PyTorch Image Models library [114].
To reduce the unexpected effect of a significant accuracy gap, the chosen model
candidates are limited to the models whose top-1 accuracy is between 79% and
83%. We also ignore the models with unusual training techniques, such as train-
ing on extra training datasets, using a small or large input resolution (e.g., less
than 200 or larger than 300), or knowledge distillation. When A and B take
different input resolutions, then we resize the attacked image from the source
network for the target network. We also sub-sample 10% ImageNet validation
images (i.e., 5,000 images) to measure the similarity. This strategy makes our
similarity score more computationally efficient.

4 Model Analysis by Network Similarity

4.1 Which Architectural Component Causes the Difference?

Settings. We list 13 key architecture components: normalization (e.g., BN [52]
and LN [3]), activations (e.g., ReLU [60] and GeLU [83]), the existence of depth-
wise convolution, or stem layer (e.g., 7X7 conv, 3x3 conv, or 16x16 conv with
stride 16 — a.k.a. “patchify” stem [69]). The list of the entire components is
shown in the Appendix. We then convert each architecture as a feature vector
based on the listed sub-modules. For example, we convert ResNet as fResnet =
[Base arch = CNN, Norm = BN, Activation = ReLU,...]. The full list of com-
ponents of 69 architectures can be found in Appendix C.

Similarity of Neural Architectures using Adversarial Attack Transferability 7

Table 1: Clusters by SAT. All the architectures here are denoted by the aliases
defined in their respective papers. We show the top-5 keywords for each cluster based on
TF-IDF. InRes, SA, and CWA denote input resolution, self-attention, and channel-wise

attention, respectively. The customized model details are described in the footnote!.
No. Top-5 Keywords Architecture
1 Stem layer: 16x16 conv w/ s16, ConViT-B [31], CrossViT-B [13|,DeiT-B [100], DeiT-S [100],
No Hierarchical, GeLU, LN, Final GAP ViT-S (patch size 16) [30]ResMLP-S24 [101], gMLP-S [67]
Stem layer: 4x4 conv w/ s4, LN, GeLU, Twins-PCPVT-B [20], Twins-SVT-§ [20], CoaT-Lite Small [25],
2 Transformer, No pooling at stem NesT-T [131], Swin-T [68], 3 (Swin-T) [14], ConvNeXt-T [69] ResMLP-B24 [101]
3 Transformer, Final GAP, GeLU, XCiT-M24 [1], XCiT-T12 [1]|, HaloRegNetZ-B**, TNT-S [41],
Pooling at stem, InRes: 224 Visformer-$ [17], PAT-$ [46], PiT-B [46]
n Stem layer: stack of 3x3 conv, 2D SA, HaloNet-50 [107], LambdaResNet-50 [7], BoTNeT-26 [92],
InRes: 256, Pooling at stem, SiLU GC-ResNeXt-50 [12], ECAHaloNeXt-50"*, ECA-BoTNeXt-26*
~ Stem layer: stack of 3x3 convs, InRes: 256, LamHaloBoTNet-50*", SE-BoTNet-33"*, SE-HaloNet-33*",
° 2D SA, CWA: middle of blocks, CNN Halo2BoTNet-50"*, GC-ResNet-50 [12], ECA-Net-33 [111]
Stem layer: 7x7 conv w/ s2, ReLU, ResNet-50 [42], ResNet-101 [42], ResNeXt-50 [117],
6 Pooling at stem, CNN, BN Wide ResNet-50 [124], SE-ResNet-50 [48], SE-ResNeXt-50 [48],
ResNet-V2-50 [43], ResNet-V2-101 [43], ResNet-50 (GN) [116],
ResNet-50 (BlurPool) [130], DPN-107 [16], Xception-65 [19]
7 NAS, Stem layer: 3x3 conv w/ s2 EfficientNet-B2 [97], FBNetV3-G [24], ReXNet (x1.5) [40],
CWA: middle of blocks, CWA, DW Conv RegNetY-32 [81], MixNet-XL [98], NF-RegNet-B1 [10]
Input resolution: 224, Stem layer: stack of 3x3 convs, NFNet-L0**, ECA-NFNet-L0"*, PoolFormer-M48 [121],
8 Group Conv, Final GAP, 2D SA ResNeSt-50 [126], ResNet-V2-50-D-EV0S**,
ConvMixer-1536/20 [104]
ReLU, Input resolution: 224, DW Conv, BN, ViT-B (patch size 32) [30], R26+ViT-S [93], DLA-X-102 [119],
9 2D self-attention eSE-VoVNet-39 [63], ResNet-101-C [15], RegNetX-320 [81],
HRNet-W32 [110]
10 ReLU + Leaky ReLU, InRes: 256, CSPResNet-50 [109], CSPResNeXt-50 [109], CSPDarkNet-53 [g],
Stem layer: 7x7 conv, CNN, Pooling at stem NF-ResNet-50 [10]

Feature important analysis. Now, we measure the feature importance by fitting
a gradient boosting regressor [32] on the feature difference (e.g., fRresNet-50 —
IDeiT-base) measured by Hamming distance and the corresponding similarity.
The details of the regressor are described in Appendix. We use the permutation
importance [9] that indicates how the trained regression model changes the pre-
diction according to randomly changing each feature. The feature importance
of each architectural component is shown in Fig. 3. We first observe that the
choice of base architecture (e.g., CNN [60], Transformer [106], and MLP-Mixer
[99]) contributes to the similarity most significantly. Fig. 3 also shows that the
design choice of the input layer (i.e., stem layer design choice or input resolu-
tion) affects the similarity as much as the choice of basic components such as
normalization layers, activation functions, and the existence of attention layers.
On the other hand, we observe that the modified efficiency-aware convolution
operations, such as depth-wise convolution [19], are ineffective for diversity.

Clustering analysis. We additionally provide a clustering analysis based on the
architectural similarities. We construct a pairwise similarity graph with adja-
cency matrix A between all 69 architectures where its vertex denotes an archi-
tecture, and its edge denotes the similarity between two networks. We perform

** Customized models by [114]: HaloRegNetZ = HaloNet -+ RegNetZ; ECA-BoTNeXt = ECA-Net -+ HaloNet
+ ResNeXt; ECA-BoTNeXt — ECA-Net + BoTNet + ResNeXt; LamHaloBoTNet — LambdaNet + HaloNet
-+ BoTNet; SE-BoTNet — SENet -+ BoTNet; SE-HaloNet — SENet + HaloNet; Halo2BoTNet — HaloNet
+ BoTNet; NFNet-LO — an efficient variant of NFNet-FO [ll]; ECA-NFNet-LO = ECA-Net + NFNet-LO;
ResNet-V2-D-EVOS — ResNet-V2 -+ EvoNorms [G6].

8 J. Hwang et al.

Permutation Importance

Base architecture W H [
Stem layer o HJ oo
Input resolution H— [
Normalization layers — 1+ L
Hierarchical structure T+
Activation functions —{TH
Pooling at stem layer —H
2D self-attention —{H
Channel-wise attention H{H
Depth-wise convolution { HIH
Group convolution HI— 3
Pooling for final features HH
Location of CW attentions { ~ —{TH
0.05 0.10 0.15 020 0.25 0.30 0.35 0.40 0.45

Fig.3: Importance of architectural compo- Fig.4: Pairwise distances

nents to network similarity. 13 components are of spectral features. Rows

sorted by the contribution to the similarities. The and columns are sorted by

larger feature importance means the component con- the clustering index. More de-

tributes more to the network similarity. tails are described in Ap-
pendix D.3.

the spectral clustering [75] on A where the number of clusters K is set to 10:
We compute the Laplacian matrix of A, . = D — A where D is the diagonal
matrix and its ¢-th component is > j A;j. Then, we perform K-means clustering
on the K-largest eigenvectors of L. The pairwise distances of spectral features
(i.e., 10-largest eigenvectors of L) of 69 neural architectures are shown in Fig. 4.
The rows and columns of Fig. 4 are sorted by the clustering index (Tab. 1).
More details with model names are described in Appendix D.2. We can see the
block-diagonal patterns, i.e., in-clusters similarities are more significant than
between-clusters similarities. More details are in Appendix D.3.

Tab. 1 shows the clustering results on 69 networks and the top-5 keywords
for each cluster based on term frequency-inverse document frequency (TF-IDF)
analysis. Specifically, we treat each model feature as a word and compute TF
and IDF by treating each architecture as a document. Then we compute the
average TF-IDF for each cluster and report top-5 keywords. Similar to Fig. 3,
the base architecture (e.g., CNN in Cluster 5, 6, 10 and Transformer in Cluster
2, 3) and the design choice for the stem layer (e.g., Cluster 1, 2, 4, 5, 6, 7, 8,
10) repeatedly appear at the top keywords. Especially, we can observe that the
differences in base architecture significantly cause the diversity in model sim-
ilarities, e.g., non-hierarchical Transformers (Cluster 1), hierarchical networks
with the patchification stem (Cluster 2), hierarchical Transformers (Cluster 3),
CNNs with 2D self-attention (Cluster 4, 5), ResNet-based architectures (Cluster
6), and NAS-based architectures (Cluster 7).

4.2 The Relationship between Training Strategy and SAT

The architectural difference is not the only cause of the model diversity. We com-
pare the impact by different architecture choices (e.g., ResNet and ViT) and by
different training strategies while fixing the model architecture, as follows: Dif-

Similarity of Neural Architectures using Adversarial Attack Transferability 9

Table 2: SAT within the same Table 3: Ensemble performance with di-
architecture. We compare the av- verse architectures. We report the error re-
erage similarity within the same ar- duction rate by varying the number of ensem-
chitecture but trained with different bled models and the diversity of the ensemble
procedures, “All” denotes the average models (related to Fig. 7a). “rand” indicates the

similarity of 69 architectures. random choice of models.
Archltecture‘ReSNet—50 VlT—S less diverse «— # of clusters — more diverse
1 2 3 4 5 rand
Init 423 4.21 -
Tr. Reg. 3.97 3.44 g 3/10.17 10.84 11.20 11.11
= 4]11.70 12.45 12.80 13.00 12.90
All | 2.73 4 5/12.58 13.41 13.79 13.99 14.11 |14.01

ferent initializations can affect the model training by the nature of the stochas-
ticity of the training procedure. For example, Somepalli et al. [90] showed that
the decision boundary of each architecture could vary by different initializations.
We also consider different optimization hyper-parameters (e.g., learning
rate, weight decay). Finally, we study the effect of different training regimes
(e.g., augmentations, type of supervision). For example, the choice of data aug-
mentation [122, 125] or label smoothing [96] can theoretically or empirically
affect adversarial robustness [21, 77, 87, 127]. We also investigate the effect of
supervision, such as self-supervision [15, 37, 44] or semi-weakly supervised learn-
ing [118]. Note that the training strategies inevitably contain the former ones.
For example, when we train models with different training regimes, models have
different initialization seeds and different optimization hyper-parameters. Com-
paring 69 different architectures also contains the effect of different initialization
and optimization hyper-parameters and parts of different training regimes. This
is necessary for achieving high classification performance.

Tab. 2 shows the comparison of similarity scores between the same architec-
ture but different learning methods (a smaller similarity means more diversity).
We report two architectures, ResNet-50 and ViT-S, and their training settings
are in Appendix E. We also show the average SAT between all 69 architectures.
In the table, we first observe that using different random initialization or dif-
ferent optimization hyper-parameters shows high correlations with each other
(almost >4.2) while the average similarity score between various neural archi-
tectures is 2.73. In other words, the difference in initializations or optimization
hyper-parameters does not significantly contribute to the model diversity.

Second, we observe that using different learning techniques remarkably af-
fects SAT (3.27 for ResNet and 3.44 for ViT), but is not as significant as the
architectural difference (2.73). Furthermore, the change of SAT caused by dif-
ferent initializations or hyper-parameters is less marked than the change caused
by different architecture (Fig. 5). These observations provide two insights. First,
the diversity resulting from various training strategies is not significant enough

10 J. Hwang et al.

)
Base 3
£
Init [40 S
n 35
wo 3.0 k 5
Base .
S
nit
2.0
ol
IR
15
wp
10 200 2’5

3.0
Base Init LR WD Base Init LR WD
ResNet-50 ViT-§ Similarity

=R
N

ResNet-50
-
5

N A O ®

Error Reduction Rate (%)

ViT-S

3.5 4.0

Fig. 5: Pairwise distance of spectral fea- Fig.6: Correlation be-
tures by different optimizations. Init, tween pairwise SAT and

LR, and WD are randomly chosen from models ensemble performance.
trained with different settings of initialization, —The trend line and its 90%
learning rate, and weight decay in Tab. 2. confidence interval are shown.

compared to the diversity of architecture. Second, designing new architecture is
more efficient in achieving diverse models rather than re-training the same one.

5 SAT Applications with Multiple Models

Here, we analyze how SAT is related to downstream tasks involving more than
one model. First, we show that using more diverse models will lead to better
ensemble performance. Second, we study the relationship between knowledge
distillation and SAT. Furthermore, we can suggest a similarity-based guideline
for choosing a teacher model when distilling to a specific architecture. Through
these observations, we can provide insights into the necessity of diverse models.

5.1 Model Diversity and Ensemble

Settings. The model ensemble is a practical technique for achieving high per-
formance. However, only few works have studied the relationship between en-
semble performance and model similarity, particularly for large-scale complex
models. Previous studies are mainly conducted on tiny datasets and linear mod-
els [61]. We investigate the change of ensemble performance by the change of
similarity based on the unweighted average method [55] (i.e., averaging the logit
values of the ensembled models). Because the ensemble performance is sensitive
to the original model performances, we define Error Reduction Rate (ERR) as
1— e where M is the set of the ensembled models, ERR(m) de-

IJ\IT\ > men Brr(m)?
notes the top-1 ImageNet validation error of model m, and Erreys(+) denotes the
top-1 error of the model ensemble results.

Results. We first measure the 2-ensemble performances among the 69 architec-
tures (i.e., the number of ensembles is (629) = 2346). We plot the relationship
between SAT and ERR in Fig. 6. We observe that there exists a strong negative

Similarity of Neural Architectures using Adversarial Attack Transferability 11

-
IS

of Clusters
——1 ——2 ——3
4 ——5

2
i 166
3 164
g 162

2

of Clusters
——1 ——2 ——3
4 ——5

g

oe e
No@

“All wrong” Samples Ratio (%)
i<

=
© o

of Clusters
—_—1 ——2 ——3

4 ——5

Error Reduction Rate (%)
©

~

5 2 5 2 5

3 4 3 4
of Ensembled Models # of Ensembled Models

(a) Top-1 Error (b) Error reduction rate (c) “All wrong” samples ratio

3 4
of Ensembled Models

Fig. 7: Model diversity and ensemble performance. We report ensemble per-
formances by varying the number of ensembled models (N) and the diversity of the
models. The diversity is controlled by choosing the models from k different clusters.

=14 =14

s Ll

] 3

212 212

@ o«

s 5

210 5 10

[} [}

=] =]

2 8 0 8

< —e— Initialization < —e— Initialization

5 —e— Hyper-params S —e— Hyper-params

(S —e— Training Regime <P —e— Training Regime

w Al w Al

2 3 4 5 2 3 4 5

of Ensembled Models # of Ensembled Models
(a) ResNet-50 (b) ViT-S

Fig. 8: Diversity by training techniques and ensemble. We report the the same
metrics as Fig. 7 for various ResNet-50 and ViT-S models in Tab. 2.

correlation between the model similarity and the ensemble performance (Pearson
correlation coefficient —0.32 with p-value ~ 0 and Spearman correlation —0.32
with p-value = 0, i.e., more diversity leads to better ensemble performance.

We also conduct N-ensemble experiments with N > 2 based on our clustering
results in Tab. 1. We evaluate the average ERR of the ensemble of models from
k clusters, i.e., if N = 5 and k = 3, the ensembled models are only sampled
from the selected 3 clusters while ignoring the other 7 clusters. We investigate
the effect of model diversity and ensemble performance by examining k =1... N
(i.e., larger k denotes more diverse ensembled models). We report the result with
ImageNet top-1 error and ERR in Fig. 7a and Fig. 7b.

In all metrics, we observe that the ensemble of more diverse models shows
better performance. Interestingly, Fig. 7b shows that when the number of clusters
for the model selection (k) is decreased, the ensemble performance by the number
of ensembled models (N) quickly reaches saturation. Tab. 3 shows that the
ensemble performances by choosing the most diverse models via SAT always
outperform the random ensemble. Similarly, Fig. 7c shows that the number of
wrong samples by all models is decreased by selecting more diverse models.

Training Strategy vs. Architecture in the ensemble scenario? Remark that Tab. 2
showed that the different training strategies are not as effective as different ar-

12 J. Hwang et al.

Flowers Ensemble Error (%)

ImageNet Ensemble Error (%)

2.00 225 2.50 275 3.00 325 3.50 2.00 225 250 275 3.00 325 3.50
SAT similarity (measured in ImageNet) SAT similarity (measured in ImageNet)

(a) SAT vs. Flowers ensemble (b) SAT vs. ImageNet ensemble

Fig. 9: Cross-dataset SAT results. SAT measured on ImageNet also has a positive
correlation with ensemble performances on Flowers-102 [76].

] []
12] ®
104 ® [) °
sl .*{."5 5 © Ours
° [] S li, et al.

ol '.:\‘ p N (X ° omepali, et a

® [] ® Tramer, et al.

0.2 0.4 0.6 0.8 1.0 12

« more similar, more dissimilar —»

Fig. 10: Empircial comparison. Relationship between the model similarity, includ-
ing SAT, Somepalli et al. [90] and Tramer et al. [103], and 2-ensemble performance.

chitectures for diversity. To examine this on the ensemble scenario, we report
the ensemble results of different training strategies, i.e., the same ResNet-50
and ViT-S in Tab. 2. For comparison with different architectures, we also report
the ensemble of different architectures where all ensembled models are from dif-
ferent clusters (i.e., N=Fk in Fig. 7). Fig. 8 shows that although using diverse
training regimes (blue lines) improves ensemble performance compared to other
techniques (red and green lines), the improvements by using different architec-
tures (yellow lines) are more significant than the improvements by using different
training regimes (blue lines) with large gaps.

Generalizability to other datasets. We examine whether more diverse architec-
tures in ImageNet SAT also lead to better ensemble performances on the other
datasets. We fine-tuned all 69 architectures to the Flowers-102 dataset [76], and
filter out low performing models (< 95% top-1 accuracy). After the filtering, we
have 16 fine-tuned models. Using the fine-tuned models, we plot the relation-
ship between the Flowers-102 ensemble performance and SAT score measured in
ImageNet. Fig. 9 shows that SAT also highly correlates with Flowers ensemble
performances, despite that SAT is measured on ImageNet. This experimental
result supports that SAT similarity can be applied in a cross-domain manner.

Comparison of different similarity functions in the ensemble scenario. Finally,
we compare the impact of the choice of the similarity function and the ensemble
performance when following our setting. We compare SAT with Somepalli et al.
[90] and Tramér et al. [103] on the 2-ensemble scenario with 8 out of 69 models
due to the stability issue of Tramer et al. [103]. Fig. 10 shows the relationship be-
tween various similarity functions and the 2-ensemble performance. We observe

Similarity of Neural Architectures using Adversarial Attack Transferability 13

that SAT only shows a strong positive correlation (blue line), while the others
show an almost random or slightly negative correlation. Finally, in Appendix A.2,
we compare SAT with Somepalli et al. [90] and a naive architecture-based clus-
tering using our features under the same setting of Fig. 7 and 8. Similarly, SAT
shows the best ensemble performance against the comparison methods.

5.2 Model Diversity and Knowledge Distillation

Knowledge distillation (KD) [47] is a training method for transferring rich knowl-
edge of a well-trained teacher network. Intuitively, KD performance affects a lot
by choice of the teacher network; however, the relationship between similarity
and KD performance has not yet been explored enough, especially for ViT. This
subsection investigates how the similarity between teacher and student networks
contributes to the distillation performance. There are several studies showing two
contradictory conclusions; Jin et al. [54] and Mirzadeh et al. [73] showed that
a similar teacher leads to better KD performance; Touvron et al. [100] reports
that distillation from a substantially different teacher is beneficial for ViT.

We train 25 ViT-Ti models with different teacher networks from 69 mod-
els that we used by the hard distillation strategy [47]. Experimental details are
described in Appendix. Fig. 11a illustrates the relationship between the teacher-
student similarity and the distillation performance. Fig. 11a tends to show a
not significant negative correlation between teacher-student similarity and dis-
tillation performance (—0.32 Pearson correlation coefficient with 0.12 p-value).
However, if we only focus on when the teacher and student networks are based
on the same architecture (i.e., Transformer), we can observe a strong positive
correlation (Fig. 11b) — 0.70 Pearson correlation coefficient with 0.078 p-value.
In this case, our observation is aligned with [54, 73]: a teacher similar to the
student improves distillation performance. However, when the teacher and stu-
dent networks are based on different architectures (e.g., CNN), then we can
observe a stronger negative correlation (Fig. 11c) with —0.51 Pearson correla-
tion coefficient and 0.030 p-value. In this case, a more dissimilar teacher leads

S 76.00 . « CONN 3 76.00 3 76.00 .
~ 7575 e Transformer ~75.75 ~ 7575
> > >

19 . Others O
& 75.50 e & 75.50

=1 . =1
37525 37525

& 75501 _°

Z75.25 .
K7500{ * * % . . & 75.00 L7500 ° ° ©
S 74.75 . S 74.75
=1 =1

® 7450 ® 7450

S 7475
s
B 74.50

Gas G745 G r4a2s
0 74.00 0 74.00 0 74.00

2.00 2.25 250 2.75 3.00 3.25 350 3.75 4.00 2.00 2.25 250 2.75 3.00 3.25 350 3.75 4.00 2.00 2.25 250 2.75 3.00 3.25 350 3.75 4.00
Similarity Similarity Similarity

(a) Results on various teachers (b) Transformer teachers (c) CONN & other teachers

Fig.11: Model diversity and distillation performance. (a) We show the rela-
tionship between teacher-student similarity and distillation performance of 25 DeiT-S
models distilled by various teacher networks. We show the relationship when the teacher
and student networks are based on (b) Transformer and (c) otherwise.

14 J. Hwang et al.

to better distillation performance. We also test other factors that can affect dis-
tillation performance in Appendix; We observe that distillation performance is
not correlated to teacher accuracy in our experiments.

Why do we observe contradictory results for Transformer teachers (Fig. 11b)
and other teachers (Fig. 11c)? Here, we conjecture that when the teacher and
student networks differ significantly, distillation works as a strong regularizer. In
this case, using a more dissimilar teacher can be considered a stronger regularizer
(Fig. 11c). On the other hand, we conjecture that if two networks are similar,
then distillation works as easy-to-follow supervision for the student network. In
this case, a more similar teacher will work better because a more similar teacher
will provide more easy-to-follow supervision for the student network (Fig. 11b).
Our experiments show that the regularization effect improves distillation perfor-
mance better than easy-to-follow supervision (i.e., the best-performing distilla-
tion result is by a CNN teacher). Therefore, in practice, we recommend using
a significantly different teacher network for achieving better distillation perfor-
mance (e.g., using RegNet [81] teacher for ViT student as [100]).

6 Discussion

In Appendix G, we describe more discussions related to SAT. We first propose an
efficient approximation of SAT when we have a new model; instead of generating
adversarial samples from all models, only generating adversarial samples from
the new model can an efficient approximation of SAT (Appendix G.1). We also
show that SAT and the same misclassified samples have a positive correlation in
Appendix G.2. Appendix G.3 demonstrates that we can estimate the similarity
with a not fully trained model (e.g., a model in an early stage). Finally, we
describe more possible applications requiring diverse models (Appendix G.4).

7 Conclusion

We have explored similarities between image classification models to investi-
gate what makes the model similar or diverse and whether developing and using
diverse models is required. For quantitative and model-agnostic similarity as-
sessment, we have suggested a new similarity function, named SAT, based on
attack transferability demonstrating differences in input gradients and decision
boundaries. Using SAT, we conduct a large-scale and extensive analysis using
69 state-of-the-art ImageNet models. We have shown that macroscopic architec-
tural properties, such as base architecture and stem architecture, have a more
significant impact on similarity than microscopic operations, such as types of
convolution, with numerical analysis. Finally, we have provided insight into the
ML applications using multiple models based on SAT, e.g., model ensemble or
knowledge distillation. Overall, we suggest using SAT to improve methods with
multiple models in a practical scenario with a large-scale training dataset and a
highly complex architecture.

Similarity of Neural Architectures using Adversarial Attack Transferability 15
Acknowledgement

We thank Taekyung Kim and Namuk Park for comments on the self-supervised
pre-training. This work was supported by an IITP grant funded by the Korean
Government (MSIT) (RS-2020-11201361, Artificial Intelligence Graduate School
Program (Yonsei University)) and by the Yonsei Signature Research Cluster
Program of 2024 (2024-22-0161).

Author Contributions

This work is done as an internship project by J Hwang under the supervision
of S Chun. S Chun initialized the project idea: understanding how different
architectures behave differently by using an adversarial attack. J Hwang, S Chun,
and D Han jointly designed the analysis toolbox. J Hwang implemented the
analysis toolbox and conducted the experiments with input from S Chun, D Han,
and J Lee. J Hwang, D Han, B Heo, and S Chun contributed to interpreting and
understanding various neural architectures under our toolbox. The initial version
of “model card” (Tab. C.3 and C.4) was built by J Hwang, S Park, and verified
by D Han and B Heo. B Heo contributed to interpreting distillation results. All
ResNet and ViT models newly trained in this work were trained by S Park. J
Lee supervised J Hwang and verified the main idea and experiments during the
project. S Chun and J Hwang wrote the initial version of the manuscript. All
authors contributed to the final manuscript.

A Empirical Comparison of SAT and Other Methods

Table A.1: Comparison of stability of measurements. We compare the stability
of method by [90] and SAT. Stability is indicated by the standard deviation (std). The
numbers in (-) mean the sampling ratio to all possible combinations to compute the
exact value. “cost” denotes relative costs compared to the total forward costs for the
50K ImageNet validation set: Somepalli et al. needs (*%) = 2.1x10'® and SAT needs
50K. Here, we assume that forward and backward computations cost the same.

Somepalli et al. [90] SAT (ours)
triplets std cost # images std cost

10 (4.8x107'%) 4.49 1.0 500 (0.01) 1.88 1.0
20 (9.6x107*) 3.28 2.0 1000 (0.02) 1.05 2.0
50 (2.4x107'?) 1.63 5.0 2500 (0.05) 0.91 5.2
100 (4.8x107'2) 1.54 10.0 5000 (0.1) 0.77 10.2

16 J. Hwang et al.

A.1 Comparison with Somepalli et al. in the Variance of Similarity

Somepalli et al. [90] proposed a sampling-based similarity score for comparing
decision boundaries of models. SAT has two advantages over Somepalli et al.:
computational efficiency and the reliability of the results. First, SAT involves
sampling 5,000 images and using 50-step PGD; the computation cost is [5,000
(sampled images) x 50 (PGD steps) + 5,000 (test to the other model)| x 2
(two models). Meanwhile, Somepalli et al. [90] sample 500 triplets and generate
2,500 points to construct decision boundaries. In this case, the total inference
cost is [500 (sampled triplets) x 2,500 (grid points)|] x 2 (two models), which
is 4.9 times larger than SAT. Secondly, Somepalli et al. sampled three images
of different classes. As the original paper used CIFAR-10 [59], 500 triplets can
cover all possible combinations of three classes among the ten classes ((130) =120
< 500). However, it becomes computationally infeasible to represent all possible
combinations of three classes among many classes (e.g., ImageNet needs (10300)
= 164,335,500, 130 times greater than its training images). Also, we find that
the similarity of [90] is unreliable when the number of sample triplets is small. In
Tab. A.1, we calculate the similarity scores between ConvNeXt-T [69] and Swin-T
[68] from ten different sets with varying sample sizes. SAT exhibits significantly
better stability (i.e., low variances) than Somepalli et al. Note that we use our
similarity measurement as the percentage degree without the logarithmic func-
tion and control the scale of samples to maintain similar computation complexity
between SAT and the compared method for a fair comparison.

A.2 Ensemble Performance Comparison of SAT and Other Methods

The purpose of our study is to provide a new lens for model similarity through
adversarial attack transferability. Since we do not have the ground truth of
the “similarity” between architectures, comparing different similarity functions
is not really meaningful. Instead, we indirectly compare SAT, Somepalli et al.
[90] and naive architecture feature-based clustering on the ensemble benchmark.
More specifically, the naive architecture clustering is based on our architecture
features proposed in Sec. 4.1; we apply the K-means clustering algorithm to get
clusters. We note that the other comparison methods cannot be applied due to
the expensive computations. The results are shown in Tab. A.2 and Tab. A.3.

Table A.2: Somepalli et al. Table A.3: Arc-based clustering
less diverse +— # of clusters — more diverse less diverse < # of clusters — more diverse

1 2 3 4 5 rand SAT
% 2|7.54 7.79 % 2| 7.60 7.80 7.78 7.84
< 3/10.85 11.03 11.13 < 3|11.02 11.08 11.12 11.11 11.20
£ 4]12.63 12.79 12.87 12.93 £ 4/13.03 12.92 12.89 12.90 12.90 13.00
5 5[13.74 13.89 13.95 14.01 14.05 5 5/14.37 14.13 14.03 14.00 14.00 |14.01 14.11
i

In the tables, SAT is the best-performing model similarity score on the en-
semble task. We also tried to Trameér et al. [103] in the same setting, but Trameér

Similarity of Neural Architectures using Adversarial Attack Transferability 17

20 22 24 26 28 30 32 34 20 22 24 26 28 3.0 32 34 20 22 24 26 28 3.0 32 34

Similarity (PGD) Similarity (PGD) Similarity (PGD)
(a) PGD vs. Autoattack (b) PGD vs. MIFGSM (c) PGD vs. VMIFGSM
g 360 o 36 :
Q355 =34 .
=3
3.50 REE] <

L
%345
3

9340

>335
2

5330
€325
V320

20 22 24 26 28 30 32 34 22 24 26 28 3.0 32 34 36 29 30 31 32 33 34 35
Similarity (ours) Similarity (PGD) Similarity (PGD)

(d) PGD vs. Low Freq. PGD (e) PGD vs. Patchfool (f) PGD vs. BIA

Fig. B.1: Effect of different adversarial attack methods to SAT. The trend
line and its 90% confidence interval are shown. We show the relationship between our
SAT using PGD [70] and SAT using other attacks, (a) Autoattack [23] (b) MIFGSM
[29](c) VMIFGSM [112] (d) low-frequency PGD [38] (e) Patchfool attack [33], and (f)
BIA [129].

et al. [103] often failed to converge and show very small differences. Hence, we
couldn’t use Tramer et al. [103] for measuring all 69 arches used in the paper.
Instead, as we reported in the main paper, we compare Tramér et al. [103] and
other model similarity variants on 8 architectures used in Fig. B.1. Among the
candidate methods, we observe that SAT shows the strongest correlation with
the ensemble performance using two models.

B Discussions

B.1 Robustness of SAT to the choice of the attack methods.

Our goal is not to design an attack-free method but to show the potential of
using adversarial attack transferability (AAT) for measuring quantitative model
similarity. However, we have checked that SAT scores are robust to the choice
of the attack methods, even for stronger attacks, such as AutoAttack [23], at-
tacks designed for enhancing AAT, such as MIFGSM [29] and VMIFGSM [112],
low-frequency targeted attacks, such as low-frequency PGD [38], method-specific
attacks, such as PatchPool [33], or generative model-based attacks, such as BIA
[129]. We sample 8 representative models among 69 models for testing the effect
of attacks on SAT; ViT-S, CoaT-Lite Small, ResNet-101, LamHaloBotNet50,
ReXNet-150, NFNet-LO, Swin-T and Twins-pcpvt. Fig. B.1a shows the high cor-
relation between SAT scores using PGD and Autoattack; it shows a correlation

18 J. Hwang et al.

coefficient of 0.98 with a p-value of 1.43 x 10~'8. For testing the Patchfool at-
tack, we only generate adversarial perturbations on ViT-S and get attack trans-
ferability to all other models (68 models) because it only targets Transformers.
Fig. B.1b and B.1c show similar results: SAT shows consistent results even for
the attacks designed for better AAT. The results show that SAT score is robust
to the choice of attack methods if the attack is strong enough. Also, the low-
frequency attack [38] shows a similar result, i.e., the frequency-targeted attack
does not affect the similarity results. In Fig. B.1le, Patchfool also shows a high
correlation compared to the PGD attack (correlation coefficient 0.91 with p-
value 3.62 x 10727). We additionally provide a result for generative model-based
attack, BIA [129]. As BIA needs to train a new generative model for a different
architecture, we only show the pre-trained models provided by the authors. We
also get a similar result with previous results for BIA. Note that the compared
attack methods are not model agnostic or computationally expensive than PGD,
e.g., PatchFool needs a heavy modification on the model code to extract atten-
tion layer outputs manually, and BIA needs to train a new generator for a new
architecture. As SAT shows consistent rankings across the attack methods, we
use PGD due to its simplicity.

B.2 Impact of Adversarial Training to SAT

While our main analyses are based on ImageNet-trained models, in this subsec-
tion, we use CIFAR-10-trained models for two reasons. First, it is still challenging
to achieve a high-performing adversarially trained model on the ImageNet scale.
On the other hand, in the CIFAR-10 training setting, a number of adversarially-
trained models are available and comparable. Second, adversarial training mod-
els show lower clean accuracy than normally trained models [105]. Adversarial
robustness and accuracy are in a trade-off, and there is no ImageNet model with
accuracy aligned with our target models yet.

We choose five adversarial training ResNet-18 from the AutoAttack reposi-
tory [23] and measure SAT using the models. The average SAT between adversar-
ial training models is 3.15, slightly lower than the similarity score with different
training strategies for ImageNet ResNet-50 (3.27 — See Tab. 2). In other words,
we can confirm that different adversarial training methods make as a difference
as different training techniques.

C Details of Architectures Used in the Analyses

We use 69 models in our research to evaluate the similarity between models
and to investigate the impact of model diversity. In the main paper, we mark
the names of models based on their research paper and PyTorch Image Models
library (timm; 0.6.7 version) [114]. Tab. C.1 shows the full list of the models
based on their research paper and timm alias.

We show brief information of the architectural components in Tab. C.2. The
full network specification is shown in Tab. C.3 and Tab. C.4. We follow the
corresponding paper and timm library to list the model features.

Similarity of Neural Architectures using Adversarial Attack Transferability

19

Table C.1: Lists of 69 models and their names based on their research paper
and timm library.

in timm

in paper in timm in paper in timm in paper
botnet26t_256 BoTNet-26 gluon_ xception65 Xception-65 resnet50_gn ResNet-50 (GN)
coat all CoaT-Lite Small |gmlp_sl6_224 gMLP-S resnetblur50 ResNet-50 (BlurPool)
convit _base ConViT-B halo2botnet50ts_256 Halo2BoTNet-50 | resnetv2_101 ResNet-V2-101
convmixer_1536_20 ConvMixer-1536/20 | halonet50ts HaloNet-50 resnetv2_50 ResNet-V2-50
convnext_ tiny ConvNeXt-T haloregnetz_b HaloRegNetZ resnetv2_50d_evos ResNet-V2-50-EV0S
crossvit_base_ 240 CrossViT-B hrnet_ w64 HRNet-W32 resnext50_32x4d ResNeXt-50
cspdarknet53 CSPDarkNet-53 jx_nest_tiny NesT-T rexnet_ 150 ReXNet (x1.5)
cspresnet50 CSPResNet-50 lambda_resnet50t L 50 | sebotnet33ts_256 SEBoTNet-33
cspresnext50 CSPResNeXt-50 lamhalobotnet50ts_256 LamHaloBoTNet-50 | sehalonet33ts SEHaloNet-33
deit_base_patchl6_224 DeiT-B mixnet_ x| MixNet-XL seresnet50 SEResNet-50

deit_small_patch16_224
dla102x2

dpn107
eca_botnext26ts_256
eca_halonext26ts
eca_nfnet_10
eca_resnet33ts
efficientnet_b2
ese_vovnet39h
fbuetv3_g
geresnet50t
geresnext50ts
gluon_resnet101_vlc

DeiT-S
DLA-X-102
DPN-107
ECA-BoTNeXt-26
ECA-HaloNeXt-26
ECA-NFNet-LO
ECA-ResNet-33
EfficientNet-B2
eSE-VoVNet-39
FBNetV3-G
GCResNet-50
GCResNeXt-50
ResNet-101-C

nf_regnet_bl
nf_resnet50
nfuet_10
pit_b_224
pit_s_224
poolformer_m48
regnetx_ 32
regnety
resmlp_24_ 224
resmlp_big_24 224
resnest50d

resnet101

resnet50

NF-Reglet-B1
NF-ResNet-50
NFNet-LO

PiT-B

PiT-S
PoolFormer-M48
RegNetX-320
RegNetY-32
ResMLP-524
ResMLP-B24
ResNeSt-50
ResNet-101
ResNet-50

seresnext50_32xdd

swin_s3_ti

- patch16_224
pepvt_base
“svt_small

visformer _small
vit_base_patch32_224
vit_small_patchl16_224
it_small_r26_s32_224
_resnet50_2
xcit_medium_24_pl6_224
Xcit_tiny_12_p8_224

_patch4_window7_224

SEResNeXt-50
3 (Swin-T)
Swin-T

INT-S
Twins-PCPVT-B
Twins-SVT-S
VisFormer-S
ViT-B

ViT-$
R26+ViT-S
Wide ResNet-50
XCiT-M24
XCiT-T12

Table C.2: Overview of model elements. We categorize each architecture with 13
different architectural components. The full feature list is in the Appendix.

Components Elements

Base architecture CNN, Transformer, MLP-Mixer, Hybrid (CNN + Transformer), NAS-Net
Stem layer 7x7 conv with stride 2, 3x3 conv with stride 2, 16x16 conv with stride 16, ...
Input resolution 224 x224, 256 x256, 240x240, 299 %299

Normalization layer BN, GN, LN, LN 4+ GN, LN + BN, Normalization-free, ...

Using hierarchical structure Yes (e.g., CNNs, Swin [68]), No (e.g., ViT [30])
Activation functions ReLU, HardSwish, SiLU, GeLU, ReLU + GeLU, ReLU + SiLU or GeLU ...
Using pooling at stem Yes, No

Using 2D self-attention Yes (e.g., [7], [92], [107]), No
Using channel-wise (CW) attention Yes (e.g., [48], [12], [111]), No
Using depth-wise convolution Yes, No
Using group convolution Yes, No
Type of pooling for final feature Classification (CLS) token, Global Average Pool (GAP)

Location of CW attentions At the end of each block, in the middle of each block, ...

20 J. Hwang et al.

Table C.3: Description of features of 69 models. “s" in “Stem layer" indicates the
stride of a layer in the stem, and the number before and after “s" are a kernel size and
size of stride, respectively. For example, “3s2/3/3" means that the stem is composed of
the first layer having 3 x 3 kernel with stride 2, the second layer having 3 x 3 kernel
with stride 1, and the last layer having 3 x 3 with stride 1.

Hierarchical ‘

Model name H Base architecture | structure Stem layer ‘In])ut rcsolution‘ Normalization ‘ Activation

botnet26t_256 CNN Yes 256 x 256 BN ReLU
convmixer_1536_20 CNN Yes 224 x 224 BN GeLU
conviext_tiny CNN Yes 224 x 224 LN GeLU
cspdarkneth: CNN Yes X 256 BN Teaky ReLU
cspresnet0 CNN Yes X 256 BN Teaky ReLU
cspresnexts0 CNN Yes X 256 BN Leaky ReLU
dlal02x2 CNN Yes 4 x 224 BN ReLU
dpul0? CNN Yes ix 224 BN ReLU
cca_botnext26ts_256 CNN Yes 5 % 256 BN SILU
halonext26ts CNN Yes 5 % 256 BN SiLU
cca_nfnet_10 CNN 1 x 224 Norm-free SiLU
cca_resnct33ts CNN 5 % 256 BN SILU
esc_vovnel39b CNN ix 224 BN ReLU
CNN 5 % 256 LN + BN ReLU
CNN : 5 X 256 LN + BN ReLU + SILU
gluon_resnet101_vlc CNN 3s2/3/3 224 x 224 BN ReLU
gluon_xception6s CNN 352/3 299 x 299 BN ReLU
halo2botnet50ts_256 CNN 352/3/352 256 x 256 BN SILU
halonethts CNN 352/3/3 256 x 256 BN SILU
Trnet_w64 CNN 352/352 224 x 224 BN ReL.U
lambda_ resnet50ts CNN 3s2/3/3 256 x 256 BN SiLU
Tamhalobotnet50ts_256 CNN 352/3/3s 256 X 256 BN SiLU
uf_resuets0 CNN 752 256 x 256 Norm-free ReLU
ninet_I0 CNN 352/3/3/352 224 x 224 Normi-free ReLU | SILU
poolformer_mds CNN 224 x 224 GN GeLU
resnestb0d CNN 224 x 224 BN ReL.U
resnet101 CNN 224 x 224 BN ReLU
resnets0 CNN 224 x 221 BN ReLU
resnets0_gn CNN 224 x 224 GN ReLU
resnetblur50 CNN 224 x 224 BN ReLU
resnetvZ_101 CNN 224 x 224 BN ReL.U
resnetv2_50 CNN 221 x 224 BN ReL.U
rosnetv2_50d_ovos CNN 224 x 221 EvoNorm -
resnexts0_32x4d CNN 224 x 224 BN ReLU
sebotnet33ts_256 CNN 256 x 2 BN ReLU + SILU
sehalonet33ts CNN 256 x 256 BN ReLU + SILU
seresuet50 CNN 224 x 224 BN ReL.U
seresnexts0_32xdd CNN 221 x 221 BN ReLU
wide_resnet50_2 CNN 224 x 224 BN ReLU
convit_base Transformer 16516 224 x 224 LN GeLU
crossvit_base_240 Transformer 16516 240 x 240 N GeLU
deit_base_patchl6_224 Transformer 5 224 x 224 N SeLU
deit_small_patch16_ Transformer 224 x 224 N GeLU
JX_nest_tiny Transformer 224 x 221 LN GeLU
pit_s_224 Transformer 224 x 224 LN GeLU
Swin_tiny_patchd_window?_224 Transformer 224 x 224 LN GeLU
tnt_s_patchl6_224 Transformer 224 x 224 N GeLU
vit se_patch32 224 Transformer 224 x 224 LN GeLU
Vit_small_patchl6_224 Transformer 224 x 221 LN GeLU
gmlp_si6_224 MLP-Mixer 16516 224 x 224 LN GeLU
vesmlp_24_224 MLP-Mixer 16516 224 x 224 Affine transform GeLU
resmlp_big_24_224 MLP-Mixer 358 224 x 224 Affine transform GeLU
swin_s3_tiny_224 NAS (TFM) Isd 224 x 224 N GeLU
cfficientnet_b2 NAS (CNN) 352 256 x 256 BN SiLU
huetv3_g NAS (CNN) 352 240 x 240 BN HardSwish
haloregnetz_b NAS (CNN) 352 224 x 224 BN ReLU | SILU
mixnet_x1 NAS (CNN) 352 224 x 224 BN ReLU + SILU
nf_regnet_bl NAS (CNN) 256 x 256 Norm-free ReLU | SILU
regnetx_320 NAS (CNN) 224 x 224 BN ReL.U
rognety 032 NAS (CNN) 224 x 221 BN ReLU
vexnet_150 NAS (CNN) 224 x 224 BN ReLU | SILU + ReLU6
coat_lite_small Hybrid 224 x 224 LN GeLU
pit_b_224 Hybrid 224 x 224 N GeLU
twins_pcpvt_base Hybrid 224 % 221 N GeLU
twins_svt_small Hybrid 224 x 221 LN GeLU
Visformer _small Hybrid 224 x 224 BN GeLU | ReLU
Vit_small_r26_s32_224 Hybrid 224 x 224 LN - GN GeLU + ReLU
Xcit_medium_24_pl6_224 Hybrid No 224 x 224 LN + BN GeLU
xcit_tiny_12_p8_224 Hybrid No 224 x 224 LN + BN GeLU

Similarity of Neural Architectures using Adversarial Attack Transferability 21

Table C.4: Description of features of 69 models. “Pooling (stem)" and “Pooling (final)"
denote “Pooling at the stem" and “Pooling for final feature", respectively. “SA", “CW",
and “DW" means “Self-attention", “Channel-wise", and “Depth-wise", respectively.

Location of

Model name H Pooling (stem) ‘ Pooling (final) ‘ 2D SA ‘ CW attention

CW attention | DW conv | Group conv
botnet26t_256 Yes GAP Yes (BoT) No No No
convmixer_1536_20 No GAP No No Yes No
convnext_tiny No GAP No No Yes No
cspdarknets3 No GAP No No No No
Cspresnets0 Yes CAP No No No No
Cspresnexts0 Yes GAP No No No
dlal02x2 No GAP No No No
dpni07 Yes GAP No No No
cca_botnext26ts_256 Yes CAP Yes (BoT) Yes (Middle No
cca_halonext26ts Yes GAP Yes (Halo) Yes (E Middle No
cca_nfnet_10 No CGAP No Yes (ECA End No
cca_resnet33ts No GAP No Yes (ECA Middle No
esc_vovnet39b No GAP No Yes (ESE End No
geresnets0t No GAP No Yes (GCA Middle Yes
geresnexthits Yes GAP No Yes (GCA Middle Yes
glhion_resnet101_vic Yes GAP No No No
ghion_xception6s No GAP No No Yes
haloZbotnet50ts_256 No GAP Ves (Halo, BoT) No No
halonethts Yes GAP -5 (Halo) No No
hrnet_wod No GAP No No No
Tambda_resnetb0ts Yes GAP Yes (Lambda) No No
Tamhalobotnets0ts_256 No GAP Yes (Lambda, Halo, BoT) No No
nf_resnets0 Yes GAP No No No
nfnet_10 No GAP No Yes (SE) End No
poolformer_mds No GAP No No No
resnestb0d Yes GAP No Yes No
resnet101 Yes GAP No No No
resnets0 Yes GAP No No No
resnets0_gn Yes GAP No No No
resnetblur50 Yes GAP No No No
vesnetv2_101 Yes GAP No No No
resnetv2_50 Yes GAP No No No
resnetv2_50d_cvos Yes GAP No No No
resnextb0_32xdd Yes GAP No No No
sebotnet33ts_256 No CAP Yes (BoT) Yes (SE) Middle No
schalonet33ts No GAP Yes (Halo) Yes (SE) Middle No
seresnets0 Yes GAP No Yes (SE) End No
seresnext50_32xdd Yes GAP No Yes (SE) End No
wide_resneth0_2 Yes GAP No No No
convit_base No CLS token No No No
crossvit_base No C No No No
deit_base_patch16_ No CLS foken No No No
deit_small_patch16_224 No CLS foken No No No
X1 No GAP No No No
pit No CLS foken No No Yes
swin_tiny_patchd_window?_224 No GAP No No No
s_patchl6_224 No CLS foken No No No
/it_base_patch32_224 No CLS foken No No No
vit_small_patchl6_224 No CLS token No No No
gmlp_s16_224 No GAP No No No
vesmlp_24_224 No GAP No No No
resmip_big No GAP No No No
Swin_s3_tiny No GAP No No No
efficientnet_b2 No GAP No Yes (SE) Middle Yes
huetv_g No GAP No Yes (SE) Middle Yes
Taloregnetz_b No GAP Yes (Halo) Yes (SE) Middle No
mixnet_xl No GAP No Yes (SE) Middle Yes
uf_regnet_bl No CAP No Yes (SE) Middle Yes
rognetx_320 No GAP No No No
Tognoty 032 No GAP No Yes (SE) Middle No
rexnet_150 No CAP No Yes (SE) Middle Yes
coat_lite No CLS token No No Yes
pit_b_224 No CLS token No No Yos
twins_pcpvt_base No GAP No No Yes
No GAP No No Yes
; No GAP No No No
vit_small_r26_s32_224 Yes CLS token No No No
Xcit_medium_ No CLS foken No No Yes
cit_tiny_12_p8_ No CLS foken No No Yes

22 J. Hwang et al.

D Feature Importance and Clustering Details

D.1 Feature Importance Analysis Details

We fit a gradient boosting regressor [32] based on Scikit-learn [80] and report
the permutation importance of each architectural component in Fig. 3 of the
main paper. The number of boosting stages, maximum depth, minimum num-
ber of samples, and learning rate are set to 500, 12, 4, and 0.02, respectively.
Permutation importance is computed by permuting a feature 10 times.

convit_base
crossvit_base_240
deit_base _patch16_224
gmip_s16_224
vit_small_patch16_224
deit_small_patch16_224
resmip_24_224
twins_pcpvt_base
coat_lite_small
convnext_tiny
twins_svt_small
jx_nest_tiny
swin_s3_tiny_224
swin_tiny_patcha_window7_224
resmip_big_24 224
xcit_medium_24_p16_224
pit_b_224
visformer_small
tnt_s_patch16_224
haloregnetz_b

it 5_224
xcit_tiny_12_p8_224
halonet5ots
lambda_resnet50ts
botnet26t_256
geresnexts0ts
eca_halonext26ts
eca_botnext26ts_256
lamhalobotnetsots_256
sebotnet33ts_256
sehalonet33ts
halo2botnets0ts_256
geresnetsot
eca_resnet33ts
wide_resnet50_2
seresnexts0_32xad
resnexts0_32x4d
resnetv2_50

resnetso

seresnets0

dpn107

resnetblurs0
resnetv2_101
resnet101
gluon_xception65
resnet50_gn

regnety 032

resnetv2_50d_evos
resnests0d
convmixer_1536_20
poolformer_mag
vit_base_patch33_224
vit_small_r26_s32_224
regnetx 320

hrnet w64

dlal02x2
ese_vovnet3ob
gluon_resnet101_vic
nf_resnetso
cspdarknets3
cspresnexts0
cspresnets0

resnet50
resnetv2_50d_evos

xcit_medium 24_p16 224

resnet101

resnetv2_50

resnetv2_101

window
resmip_big_24 224

xcit_tiny_12_p8 224
seresnext50_32xad
resnext50_32x4d

y_patchd,

swin_tiny

Fig. D.1: Pairwise similarity among 69 models. Rows and columns are sorted
by the clustering index in Tab. 2. (n, n) component of pairwise similarity is close to
4.6 (log100) because the attack success rate is almost 100% when a model used for
generating adversarial perturbation and attacked model are the same.

Similarity of Neural Architectures using Adversarial Attack Transferability 23
D.2 Pairwise Similarities

Fig. D.1 indicates the pairwise similarity among 69 models. We can observe a
weak block pattern around clusters, as also revealed in Fig. D.2.

D.3 Spectral Clustering Details

We use the normalized Laplacian matrix to compute the Laplacian matrix. We
also run K-means clustering 100 times and choose the clustering result with the
best final objective function to reduce the randomness by the K-means clustering.

convit_base
crossvit_base_240
deit_base_patch16_224
gmip_s16_224
vit_small_patch16_224
deit_small_patch16_224
resmip_24_224
twins_pcpvt_base
coat_lite_small
convnext_tiny
twins_svt_small
jx_nest_tiny
swin_s3_tiny_224
swin_tiny_patcha_window7_224
resmip_big 24 224
xcit_medium_24_p16_224
pit_b_224
visformer_small
tnt_s_patch16_224
haloregnetz_b
pit_s_224
xcit_tiny_12_p8_224
halonet50ts
lambda_resnet50ts
botnet26t 256
geresnextsots
eca_halonext26ts
eca_botnext26ts_256
lamhalobotnets0ts_256
sebotnet33ts_256
sehalonet33ts
haloZbotnet0ts 256
geresnetsot
eca_resnet33ts
wide_resnet50_2
seresnext50_32xad
resnexts0_32xad
resnetv2_50

resnet50

seresnets0

dpn107

resnetblurs0
resnetv2_101
resnet101
gluon_xception65
resnets0_gn
regnety_032

fonetv3_g
efficientnet_b2
mixnet_xI

rexnet_150
nf_regnet_bl

convmixer_1536_20
poolformer_mag
vit_base_patch32 224
vit_small_r26_s32_224
regnetx 320

hrnet w64

dla102x2
ese_vovnet39b
gluon_resnet101_vic
nf_resnet50
cspdarknets3
cspresnexts0
cspresnets0

convit_base
224
window7_224
fesnet50_gn
regnety_032
fonetv3_g

Lpatch16,
eca_resnet33ts

swin_s3_tiny_224.

res
xcit_medi

vit_small
y_patchd
gluon

swin_tiny

Fig. D.2: Spectral features of 69 architectures. The K-th largest eigenvectors
of the Laplacian matrix of the pairwise similarity graph of 69 architectures are shown
(K = 10 in this figure). Rows and columns are sorted by the clustering index in Tab.
2. We denote the model name in timm for each row and column.

24 J. Hwang et al.

We visualize the pairwise distances of the spectral features (i.e., K-largest
eigenvectors of L) of 69 architectures with their model names in Fig. D.2. This
figure is an extension of Fig. 4, now including the model names. Note that rows
and columns of Fig. D.2 are sorted by the clustering results. Fig. D.2 shows block
diagonal patterns, i.e., in-cluster similarities are large while between-cluster sim-
ilarities are small.

E Training Settings for Models Used in Analyses

Models with various training methods for Sec. 4.1. We train 21 ResNet-50 mod-
els and 16 ViT-S from scratch individually by initializing each network with
different random seeds. We further train 28 ResNet-50 models by randomly
choosing learning rate (x0.1, x0.2, x0.5, x1, x2, and x5 where the base learn-
ing rate is 0.1), weight decay (x0.1, x0.2, x0.5, x1, x2, and x5 where the base
weight decay is le-4), and learning rate scheduler (step decay or cosine decay).
Similarly, we train 9 ViT-S models by randomly choosing learning rate (x0.2,
x0.4, and x1 where the base learning rate is 5e-4) and weight decay (x0.2,
x0.4, and x1 where the base weight decay is 0.05). Note that the DeiT training
is unstable when we use a larger learning rate or weight decay than the base
values. Finally, we collect 22 ResNet-50 models with different training regimes:
1 model with standard training by PyTorch [79]; 4 models trained by GluonCV
[39]'; a semi-supervised model and semi-weakly supervised model on billion-scale
unlabeled images by Yalniz et al. [118]?; 5 models trained by different augmen-
tation methods (Cutout [27], Mixup [125], manifold Mixup [108], CutMix [122],
and feature CutMix®; 10 optimized ResNet models by [115]*. We also collect 7
ViT-S models with different training regimes, including the original ViT training
setup [30]°, a stronger data augmentation setup in the Deit paper [100]-3°, the
training setup with distillation [100]-3°, an improved DeiT training setup [102]-
3% , and self-supervised training fashions by MoCo v3 [15]°, MAE [44]" and
BYOL [37]®. We do not use adversarially-trained networks because the adver-
sarial training usually drops the standard accuracy significantly [105].

Distillation models for Sec. 5. We train ViT-Ti student models with 25 different
teacher models using hard distillation strategy. We follow the distillation train-
ing setting of DeiT official repo?, only changing the teacher model. Note that we

1 gluon_resnet50_v1b, gluon_resnet50 _vlc, gluon _resnet50 vld, and gluon_resnet50 _vls from

timm library.
2 ssl_resnet50 and swsl_resnet50 from timm library.
3 We use the official weights provided by https://github.com/clovaai/CutMix-PyTorch.

We use the official weights provided by https://github.com/rwightman/pytorch-image-models/
releases/tag/v0.1-rsb-weights

deit _small_patchl16_224, vit_small_patchl6_224, deit_small_distilled patchl6_ 224, and
deit3 small patchl6 224 from timm library.

We train the ViT-S model by following https://github.com/facebookresearch/moco-v3
We train the ViT-S model by following https://github.com/facebookresearch/mae

We train the ViT-S model by following https://github.com/lucidrains/byol-pytorch
https://github.com/facebookresearch/deit.

© 0w N o

https://github.com/clovaai/CutMix-PyTorch
https://github.com/rwightman/pytorch-image-models/releases/tag/v0.1-rsb-weights
https://github.com/rwightman/pytorch-image-models/releases/tag/v0.1-rsb-weights
https://github.com/facebookresearch/moco-v3
https://github.com/facebookresearch/mae
 https://github.com/lucidrains/byol-pytorch
https://github.com/facebookresearch/deit

Similarity of Neural Architectures using Adversarial Attack Transferability 25

resize the input images to the input size the teacher model requires if the input

sizes of student and teacher models differ. If a teacher model needs a different
input resolution, such as 240 x 240 and 256 x 256, we resize the input image for
distilling it. Because DeiT-Ti has low classification accuracy compared to teacher
models, the similarity score is calculated between DeiT-S and 25 models. The 25
teacher models are as follows: BoTNet-26, CoaT-Lite Small, ConViT-B, ConvNeXt-B,
CrossViT-B, CSPDarkNet-53, CSPResNeXt-50, DLA-X-102, DPN-107, EfficientNet-B2,
FBNetV3-G, GC-ResNet-50, gMLP-S, HaloRegNetZ, MixNet-XL, NFNet-LO, PiT-S, RegNetY-032,
ResMLP-24, ResNet-50, SEHaloNet33, Swin-T, TNT-S, VisFormer-S, and XCiT-T12.

F Knowledge Distillation

F.1 Teacher Accuracy and Distillation Performance

— 76.00 o
75.751 .

75.501 ° °

75251 °®

75.001 e o °®
74.75 1 °
74.50
74.25

(%

istillation Accuracy

D
~
B
o
S

79.5 80.0 80.5 81.0 815 82.0 825
Teacher Accuracy (%)

Fig. F.1: Teacher network accuracy and distillation performance. There is no
significant correlation between teacher accuracy and distillation performance.

The similarity between teacher and student networks may not be the only
factor contributing to distillation. For example, a stronger teacher can lead to
better distillation performance [123]. In Fig. F.1, we observe that if the range
of the teacher accuracy is not significantly large enough (e.g., between 79.5 and
82.5), then the correlation between teacher network accuracy and distillation
performance is not significant; 0.049 Pearson correlation coefficient with 0.82
p-value. In this case, we can conclude that the teacher and student networks
similarity contributes more to the distillation performance than the teacher per-
formance.

26 J. Hwang et al.

c 180 S
< 4.0 o
) 160
© o
935 & 1404
g 21201
QO 3.0 ©
3‘2 . Z 100
Eh € 8o
= (]
£ 297 £ 601
= ©
[92] 0
1.54 40
3+
20 25 30 35 4.0 20 22 24 26 28 30 32
Similarity (Two-side) Similarity (ours)

(a) Approximated (one-side) SAT vs. (b) SAT vs. The number of same mis-
original (two-side). classification.

Fig. G.1: Additional Analysis for SAT.

G Limtations and Discussions

G.1 Efficient Approximation of SAT for a Novel Model

We can use our toolbox for designing a new model; we can measure SAT between
a novel network and existing N architectures; a novel network can be assigned
to clusters (Tab. 1) to understand how it works. However, it requires generating
adversarial samples for all N +1 models (e.g., 70 in our case), which is computa-
tionally inefficient. Instead, we propose the approximation of Eq. 1 by omitting
to compute the accuracy of the novel network on the adversarial samples of the
existing networks. It will break the symmetricity of SAT, but we found that the
approximated score and the original score have high similarity — 0.82 Pearson
coefficient with almost 0 p-value — as shown in Fig. G.1a.

As an example, we tested Gluon-ResNeXt-50 [39] and the distilled version of
DeiT-S [100]. As observed in Tab. 2 and Fig. 5, models with the same architecture
have high similarity compared to models with different architectures; hence, we
expect that Gluon-ResNeXt-50 is assigned to the same cluster with ResNeXt-50,
and distilled DeiT-S is assigned to the same cluster with DeiT-S. As we expected,
each network is assigned to the desired cluster. Therefore, we suggest using our
efficient approximation for analyzing a novel network with our analysis toolbox.

G.2 Adversarial Attack Transferability and Direction of
Missclassification

Waseda et al. [113] showed that adversarial attack transferability is highly related
to the direction of the misclassification. We examine if SAT is related to the
misclassification. Fig. G.1b shows the relationship between SAT and the number
of the same misclassification by the attack. We observe that they are highly
correlated, i.e., we confirmed that SAT is also related to the misclassification.

Similarity of Neural Architectures using Adversarial Attack Transferability 27

G.3 Change of SAT During Training

We check the adversarial attack transferability between the fully trained model
and less trained models on CIFAR-10 with 180 training epochs. A model trained
with only 20 epochs shows high similarity over different initializations (4.23 in
Tab. 2 of the main paper). Note that SAT considers models having similar clean
accuracy; namely, there is room to explore this further in future work.

Table G.1: Change of SAT between fully-trained model (epoch 180) and models on
various epochs.

Epoch‘ 0 20 40 60 80 100 120 140 160 180
SAT ‘2.84 4.46 4.56 4.58 4.59 4.59 4.60 4.60 4.60 4.60

G.4 More Possible Applications Requiring Diverse Models

In the main paper, we introduce several applications with multiple models, such
as model ensemble, knowledge distillation, and novel model development. As
another example, we employ SAT-based diverse model selection for improving
the dataset distillation (DD) task with random network selection [128]. DD task
[62, 120, 128, 132, 133] aims to synthesize a small (usually less than 5 images per
class) but informative dataset that prevents a significant drop from the original
performance. Acc-DD [128] employs multiple random networks for DD, where
each network is randomly selected during the training. In this study, we show
that a more diverse network selection can help synthesize more informative and
diverse condensed images. We replace the random selection of Acc-DD (Rand)
with the selection by the probability proportional to (1) the similarity (Psix)
or (2) the inverse of similarity (P,;,-1). More specifically, we first (a) select a
network randomly and (b) select the next network by (1) or (2) with the current
network. We repeat (b) similar to K-means++ [2]. We report the CIFAR-10
results by setting images per class as 1 using 50 CNNs. Rand shows 48.6 top-1
accuracy, while Pg;, and Pg;;—1 show 48.7 and 49.4, respectively. Namely, a more
diverse network selection (Pgj,-1) helps Ace-DD.

References

1]

2]
3]

4]

(5]

[6]

[11]

[12]

[13]

[14]

[15]
[16]
[17]

[18]

Alaaeldin Ali, Hugo Touvron, Mathilde Caron, Piotr Bojanowski, Matthijs
Douze, Armand Joulin, Ivan Laptev, Natalia Neverova, Gabriel Synnaeve, Jakob
Verbeek, et al. Xcit: Cross-covariance image transformers. In Adv. Neural Inform.
Process. Syst., 2021. 7

David Arthur, Sergei Vassilvitskii, et al. k-means++: The advantages of careful
seeding. In Soda, pages 1027-1035, 2007. 27

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization.
arXw preprint arXiw:1607.06450, 2016. 1, 6

Jiawang Bai, Li Yuan, Shu-Tao Xia, Shuicheng Yan, Zhifeng Li, and Wei Liu.
Improving vision transformers by revisiting high-frequency components. In Fu-
ropean Conference on Computer Vision, pages 1-18. Springer, 2022. 2, 4
Yutong Bai, Jieru Mei, Alan L Yuille, and Cihang Xie. Are transformers more
robust than cnns? Advances in neural information processing systems, 34:26831—
26843, 2021. 3

Naman Bansal, Chirag Agarwal, and Anh Nguyen. Sam: The sensitivity of at-
tribution methods to hyperparameters. In IEEE Conf. Comput. Vis. Pattern
Recog., 2020. 2, 3

Irwan Bello. Lambdanetworks: Modeling long-range interactions without atten-
tion. In Int. Conf. Learn. Represent., 2021. 7, 19

Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. Yolov4: Op-
timal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934,
2020. 7

Leo Breiman. Random forests. Machine learning, 45(1):5-32, 2001. 7

Andrew Brock, Soham De, and Samuel L Smith. Characterizing signal propaga-
tion to close the performance gap in unnormalized resnets. In Int. Conf. Learn.
Represent., 2021. 7

Andy Brock, Soham De, Samuel L Smith, and Karen Simonyan. High-
performance large-scale image recognition without normalization. In Int. Conf.
Mach. Learn., 2021. 7

Yue Cao, Jiarui Xu, Stephen Lin, Fangyun Wei, and Han Hu. Gcnet: Non-local
networks meet squeeze-excitation networks and beyond. In Int. Conf. Comput.
Vis. Worksh., 2019. 7, 19

Chun-Fu Richard Chen, Quanfu Fan, and Rameswar Panda. Crossvit: Cross-
attention multi-scale vision transformer for image classification. In Int. Conf.
Comput. Vis., 2021. 7

Minghao Chen, Kan Wu, Bolin Ni, Houwen Peng, Bei Liu, Jianlong Fu, Hongyang
Chao, and Haibin Ling. Searching the search space of vision transformer. In Adv.
Neural Inform. Process. Syst., 2021. 7

Xinlei Chen, Saining Xie, and Kaiming He. An empirical study of training self-
supervised vision transformers. Int. Conf. Comput. Vis., 2021. 9, 24

Yunpeng Chen, Jianan Li, Huaxin Xiao, Xiaojie Jin, Shuicheng Yan, and Jiashi
Feng. Dual path networks. In Adv. Neural Inform. Process. Syst., 2017. 7
Zhengsu Chen, Lingxi Xie, Jianwei Niu, Xuefeng Liu, Longhui Wei, and Qi Tian.
Visformer: The vision-friendly transformer. In Int. Conf. Comput. Vis., 2021. 7
Junsuk Choe, Seong Joon Oh, Sanghyuk Chun, and Hyunjung Akata,
Zeynepand Shim. Evaluation for weakly supervised object localization: Protocol,
metrics, and datasets. IEEE Trans. Pattern Anal. Mach. Intell., 2022. 2, 3

Similarity of Neural Architectures using Adversarial Attack Transferability 29

[19]

[20]

21]

[22]

23]

[24]

[25]

[26]

[27]
[28]

[29]

[30]

[31]

[32]

[33]

[34]

Frangois Chollet. Xception: Deep learning with depthwise separable convolutions.
In IEEE Conf. Comput. Vis. Pattern Recog., 2017. 7

Xiangxiang Chu, Zhi Tian, Yuqing Wang, Bo Zhang, Haibing Ren, Xiaolin Wei,
Huaxia Xia, and Chunhua Shen. Twins: Revisiting the design of spatial attention
in vision transformers. In Adv. Neural Inform. Process. Syst., 2021. 7
Sanghyuk Chun, Seong Joon Oh, Sangdoo Yun, Dongyoon Han, Junsuk Choe,
and Youngjoon Yoo. An empirical evaluation on robustness and uncertainty of
regularization methods. In Int. Conf. Mach. Learn. Worksh., 2019. 9

Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified adversarial robustness
via randomized smoothing. In Int. Conf. Mach. Learn., 2019. 4

Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness
with an ensemble of diverse parameter-free attacks. In Int. Conf. Mach. Learn.,
2020. 4, 6, 17, 18

Xiaoliang Dai, Alvin Wan, Peizhao Zhang, Bichen Wu, Zijian He, Zhen Wei,
Kan Chen, Yuandong Tian, Matthew Yu, Peter Vajda, et al. Fbnetv3: Joint
architecture-recipe search using predictor pretraining. In IEEE Conf. Comput.
Vis. Pattern Recog., 2021. 7

Zihang Dai, Hanxiao Liu, Quoc V Le, and Mingxing Tan. Coatnet: Marrying
convolution and attention for all data sizes. In Adv. Neural Inform. Process.
Syst., 2021. 7

Ambra Demontis, Marco Melis, Maura Pintor, Matthew Jagielski, Battista Big-
gio, Alina Oprea, Cristina Nita-Rotaru, and Fabio Roli. Why do adversarial
attacks transfer? explaining transferability of evasion and poisoning attacks. In
28th USENIX security symposium (USENIX security 19), pages 321-338, 2019.
2,4

Terrance DeVries and Graham W Taylor. Improved regularization of convolu-
tional neural networks with cutout. arXiv preprint arXiv:1708.04552, 2017. 24
Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima
can generalize for deep nets. In Int. Conf. Mach. Learn., 2017. 2

Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and
Jianguo Li. Boosting adversarial attacks with momentum. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 9185-9193,
2018. 6, 17

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth
16x16 words: Transformers for image recognition at scale. In Int. Conf. Learn.
Represent., 2021. 7, 19, 24

Stéphane d’Ascoli, Hugo Touvron, Matthew L Leavitt, Ari S Morcos, Giulio
Biroli, and Levent Sagun. Convit: Improving vision transformers with soft con-
volutional inductive biases. In Int. Conf. Mach. Learn., 2021. 7

Jerome H Friedman. Greedy function approximation: a gradient boosting ma-
chine. Annals of statistics, pages 1189-1232, 2001. 7, 22

Yonggan F Fu, Shang Wu, Yingyan Lin, et al. Patch-fool: Are vision transformers
always robust against adversarial perturbations? Int. Conf. Learn. Represent.,
2022. 2, 3,4, 6, 17

Robert Geirhos, Carlos RM Temme, Jonas Rauber, Heiko H Schiitt, Matthias
Bethge, and Felix A Wichmann. Generalisation in humans and deep neural
networks. In Adv. Neural Inform. Process. Syst., 2018. 3, 5

30

[35]

[36]

[37]

[38]

[39]

[40]

[41]
[42]
[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

J. Hwang et al.

Robert Geirhos, Kristof Meding, and Felix A Wichmann. Beyond accuracy:
quantifying trial-by-trial behaviour of cnns and humans by measuring error con-
sistency. In Adv. Neural Inform. Process. Syst., 2020. 1, 3, 5

Tan J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and har-
nessing adversarial examples. In Int. Conf. Learn. Represent., 2015. 3
Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre
Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan
Guo, Mohammad Gheshlaghi Azar, et al. Bootstrap your own latent-a new ap-
proach to self-supervised learning. In Adv. Neural Inform. Process. Syst., 2020.
9,24

Chuan Guo, Jared S Frank, and Kilian @@ Weinberger. Low frequency adversarial
perturbation. UAI 2019. 6, 17, 18

Jian Guo, He He, Tong He, Leonard Lausen, Mu Li, Haibin Lin, Xingjian Shi,
Chenguang Wang, Junyuan Xie, Sheng Zha, Aston Zhang, Hang Zhang, Zhi
Zhang, Zhongyue Zhang, Shuai Zheng, and Yi Zhu. Gluoncv and gluonnlp: Deep
learning in computer vision and natural language processing. Journal of Machine
Learning Research, 21(23):1-7, 2020. 24, 26

Dongyoon Han, Sangdoo Yun, Byeongho Heo, and YoungJoon Yoo. Rethinking
channel dimensions for efficient model design. In IEEE Conf. Comput. Vis.
Pattern Recog., 2021. 7

Kai Han, An Xiao, Enhua Wu, Jianyuan Guo, Chunjing Xu, and Yunhe Wang.
Transformer in transformer. In Adv. Neural Inform. Process. Syst., 2021. 7
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In IEEE Conf. Comput. Vis. Pattern Recog., 2016. 1, 7
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings
in deep residual networks. In Eur. Conf. Comput. Vis., 2016. 7

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollar, and Ross Gir-
shick. Masked autoencoders are scalable vision learners. In IEEE Conf. Comput.
Vis. Pattern Recog., 2022. 9, 24

Tong He, Zhi Zhang, Hang Zhang, Zhongyue Zhang, Junyuan Xie, and Mu Li.
Bag of tricks for image classification with convolutional neural networks. In IEEE
Conf. Comput. Vis. Pattern Recog., 2019. 7

Byeongho Heo, Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Junsuk Choe,
and Seong Joon Oh. Rethinking spatial dimensions of vision transformers. In
Int. Conf. Comput. Vis., 2021. 7

Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. Distilling the knowledge in a
neural network. In Adv. Neural Inform. Process. Syst. Worksh., 2015. 13

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In IEEE Conf.
Comput. Vis. Pattern Recog., 2018. 7, 19

Jisung Hwang, Younghoon Kim, Sanghyuk Chun, Jaejun Yoo, Ji-Hoon Kim,
and Dongyoon Han. Where to be adversarial perturbations added? investigating
and manipulating pixel robustness using input gradients. ICLR Workshop on
Debugging Machine Learning Models, 2019. 4

Jaehui Hwang, Jun-Hyuk Kim, Jun-Ho Choi, and Jong-Seok Lee. Just one mo-
ment: Structural vulnerability of deep action recognition against one frame at-
tack. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 7668-7676, 2021. 2, 3, 4

Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon
Tran, and Aleksander Madry. Adversarial examples are not bugs, they are fea-
tures. In Adv. Neural Inform. Process. Syst., 2019. 6

Similarity of Neural Architectures using Adversarial Attack Transferability 31

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift. In Int. Conf. Mach. Learn.,
2015. 1,6

Mingqi Jiang, Saeed Khorram, and Li Fuxin. Comparing the decision-making
mechanisms by transformers and cnns via explanation methods. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
9546-9555, 2024. 3

Xjao Jin, Baoyun Peng, Yichao Wu, Yu Liu, Jiaheng Liu, Ding Liang, Junjie
Yan, and Xiaolin Hu. Knowledge distillation via route constrained optimization.
In Int. Conf. Comput. Vis., 2019. 13

Cheng Ju, Aurélien Bibaut, and Mark van der Laan. The relative performance
of ensemble methods with deep convolutional neural networks for image classifi-
cation. Journal of Applied Statistics, 45(15):2800-2818, 2018. 10

Hamid Karimi and Jiliang Tang. Decision boundary of deep neural networks:
Challenges and opportunities. In Proceedings of the 13th International Confer-
ence on Web Search and Data Mining, 2020. 2, 4

Gihyun Kim and Jong-Seok Lee. Analyzing adversarial robustness of vision trans-
formers against spatial and spectral attacks. arXiv preprint arXiv:2208.09602,
2022. 2, 4

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Sim-
ilarity of neural network representations revisited. In Int. Conf. Mach. Learn.,
2019. 2

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from
tiny images. 2009. 16

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Adv. Neural Inform. Process. Syst.,
2012. 1,6, 7

Ludmila I Kuncheva and Christopher J Whitaker. Measures of diversity in clas-
sifier ensembles and their relationship with the ensemble accuracy. Machine
learning, 51(2):181-207, 2003. 3, 5, 10

Saehyung Lee, Sanghyuk Chun, Sangwon Jung, Sangdoo Yun, and Sungroh Yoon.
Dataset condensation with contrastive signals. In International Conference on
Machine Learning (ICML), 2022. 27

Youngwan Lee and Jongyoul Park. Centermask: Real-time anchor-free instance
segmentation. In IEEE Conf. Comput. Vis. Pattern Recog., 2020. 7

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visu-
alizing the loss landscape of neural nets. In Adv. Neural Inform. Process. Syst.,
2018. 2

Yuanchun Li, Ziqi Zhang, Bingyan Liu, Ziyue Yang, and Yunxin Liu. Modeldiff:
Testing-based dnn similarity comparison for model reuse detection. In Proceed-
ings of the 30th ACM SIGSOFT International Symposium on Software Testing
and Analysis, pages 139-151, 2021. 4

Hanxiao Liu, Andy Brock, Karen Simonyan, and Quoc Le. Evolving
normalization-activation layers. In Adv. Neural Inform. Process. Syst., 2020.
7

Hanxiao Liu, Zihang Dai, David So, and Quoc V Le. Pay attention to mlps. In
Adv. Neural Inform. Process. Syst., 2021. 7

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin,
and Baining Guo. Swin transformer: Hierarchical vision transformer using shifted
windows. In Int. Conf. Comput. Vis., 2021. 7, 16, 19

32

[69]

[70]

[71]

[72]

(73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

J. Hwang et al.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Dar-
rell, and Saining Xie. A convnet for the 2020s. In IEEE Conf. Comput. Vis.
Pattern Recog., 2022. 6, 7, 16

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. Towards deep learning models resistant to adversarial attacks. In
Int. Conf. Learn. Represent., 2018. 2, 3, 4, 6, 17

Horia Mania, John Miller, Ludwig Schmidt, Moritz Hardt, and Benjamin Recht.
Model similarity mitigates test set overuse. Adv. Neural Inform. Process. Syst.,
32, 2019. 1

Kristof Meding, Luca M Schulze Buschoff, Robert Geirhos, and Felix A Wich-
mann. Trivial or impossible—dichotomous data difficulty masks model differ-
ences (on imagenet and beyond). In Int. Conf. Learn. Represent., 2022. 1, 3
Seyed Iman Mirzadeh, Mehrdad Farajtabar, Ang Li, Nir Levine, Akihiro Mat-
sukawa, and Hassan Ghasemzadeh. Improved knowledge distillation via teacher
assistant. In Proceedings of the AAAI Conference on Artificial Intelligence, 2020.
13

Muhammad Muzammal Naseer, Kanchana Ranasinghe, Salman H Khan, Mu-
nawar Hayat, Fahad Shahbaz Khan, and Ming-Hsuan Yang. Intriguing proper-
ties of vision transformers. Advances in Neural Information Processing Systems,
34:23296-23308, 2021. 3

Andrew Ng, Michael Jordan, and Yair Weiss. On spectral clustering: Analysis
and an algorithm. Adv. Neural Inform. Process. Syst., 2001. 8

M-E. Nilsback and A. Zisserman. Automated flower classification over a large
number of classes. In Proceedings of the Indian Conference on Computer Vision,
Graphics and Image Processing, 2008. 12

Chanwoo Park, Sangdoo Yun, and Sanghyuk Chun. A unified analysis of mixed
sample data augmentation: A loss function perspective. In Adv. Neural Inform.
Process. Syst., 2022. 9

Namuk Park and Songkuk Kim. How do vision transformers work? In Int. Conf.
Learn. Represent., 2022. 2, 3, 4

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.
Pytorch: An imperative style, high-performance deep learning library. In Adv.
Neural Inform. Process. Syst., 2019. 24

Fabian Pedregosa, Gaél Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning in python. Journal
of Machine Learning Research, 12:2825-2830, 2011. 22

Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr
Dollar. Designing network design spaces. In IEEE Conf. Comput. Vis. Pattern
Recog., 2020. 7, 14

Maithra Raghu, Thomas Unterthiner, Simon Kornblith, Chiyuan Zhang, and
Alexey Dosovitskiy. Do vision transformers see like convolutional neural net-
works? Advances in neural information processing systems, 34:12116-12128,
2021. 2, 3

Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation
functions. arXiv preprint arXiw:1710.05941, 2017. 6

Shahbaz Rezaei and Xin Liu. A target-agnostic attack on deep models: Exploiting
security vulnerabilities of transfer learning. 2020. 2, 4

Similarity of Neural Architectures using Adversarial Attack Transferability 33

[85]

[36]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

97]

[98]

[99]

[100]

[101]

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.
Imagenet large scale visual recognition challenge. Int. J. Comput. Vis., 2015. 6
Luca Scimeca, Seong Joon Oh, Sanghyuk Chun, Michael Poli, and Sangdoo Yun.
Which shortcut cues will dnns choose? a study from the parameter-space per-
spective. In Int. Conf. Learn. Represent., 2022. 3, 5

Ali Shafahi, Amin Ghiasi, Furong Huang, and Tom Goldstein. Label smooth-
ing and logit squeezing: a replacement for adversarial training? arXiv preprint
arXiv:1910.11585, 2019. 9

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convo-
lutional networks: Visualising image classification models and saliency maps. In
Int. Conf. Learn. Represent. Worksh., 2014. 3

D. Smilkov, N. Thorat, B. Kim, F. Viégas, and M. Wattenberg. Smoothgrad:
removing noise by adding noise. Int. Conf. Mach. Learn. Worksh., 2017. 2, 3
Gowthami Somepalli, Liam Fowl, Arpit Bansal, Ping Yeh-Chiang, Yehuda Dar,
Richard Baraniuk, Micah Goldblum, and Tom Goldstein. Can neural nets learn
the same model twice? investigating reproducibility and double descent from the
decision boundary perspective. In IEEE Conf. Comput. Vis. Pattern Recog.,
2022. 2, 3, 5,9, 12, 13, 15, 16

Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Ried-
miller. Striving for simplicity: The all convolutional net. In Int. Conf. Learn.
Represent. Worksh., 2015. 2, 3

Aravind Srinivas, Tsung-Yi Lin, Niki Parmar, Jonathon Shlens, Pieter Abbeel,
and Ashish Vaswani. Bottleneck transformers for visual recognition. In IEEE
Conf. Comput. Vis. Pattern Recog., 2021. 7, 19

Andreas Peter Steiner, Alexander Kolesnikov, Xiaohua Zhai, Ross Wightman,
Jakob Uszkoreit, and Lucas Beyer. How to train your vit? data, augmentation,
and regularization in vision transformers. In Transactions on Machine Learning
Research, 2022. 7

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for
deep networks. In Int. Conf. Mach. Learn., 2017. 2, 3

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Er-
han, Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks.
2014. 3

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew
Wojna. Rethinking the inception architecture for computer vision. In IFEE
Conf. Comput. Vis. Pattern Recog., 2016. 9

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolu-
tional neural networks. In Int. Conf. Mach. Learn., 2019. 7

Mingxing Tan and Quoc V Le. Mixconv: Mixed depthwise convolutional kernels.
In Brit. Mach. Vis. Conf., 2019. 7

Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua
Zhai, Thomas Unterthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob
Uszkoreit, et al. Mlp-mixer: An all-mlp architecture for vision. In Adv. Neural
Inform. Process. Syst., 2021. 7

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre
Sablayrolles, and Hervé Jégou. Training data-efficient image transformers &
distillation through attention. In Int. Conf. Mach. Learn., 2021. 7, 13, 14, 24, 26
Hugo Touvron, Piotr Bojanowski, Mathilde Caron, Matthieu Cord, Alaaeldin
El-Nouby, Edouard Grave, Gautier Izacard, Armand Joulin, Gabriel Synnaeve,

34

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

J. Hwang et al.

Jakob Verbeek, et al. Resmlp: Feedforward networks for image classification with
data-efficient training. IEEE Trans. Pattern Anal. Mach. Intell., 2022. 7

Hugo Touvron, Matthieu Cord, and Hervé Jégou. Deit iii: Revenge of the vit.
arXw preprint arXiw:2204.07118, 2022. 24

Florian Tramér, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and Patrick
McDaniel. The space of transferable adversarial examples. arXiv preprint
arXiv:1704.03453, 2017. 2, 3, 5, 12, 16, 17

Asher Trockman and J. Zico Kolter. Patches are all you need? arXiv preprint
arXiv:2201.09792, 2022. 7

Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and
Aleksander Madry. Robustness may be at odds with accuracy. In Int. Conf.
Learn. Represent., 2019. 6, 18, 24

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.
In Adv. Neural Inform. Process. Syst., 2017. 1, 7

Ashish Vaswani, Prajit Ramachandran, Aravind Srinivas, Niki Parmar, Blake
Hechtman, and Jonathon Shlens. Scaling local self-attention for parameter effi-
cient visual backbones. In IEEE Conf. Comput. Vis. Pattern Recog., 2021. 7,
19

Vikas Verma, Alex Lamb, Christopher Beckham, Amir Najafi, loannis Mitliagkas,
David Lopez-Paz, and Yoshua Bengio. Manifold mixup: Better representations
by interpolating hidden states. In Int. Conf. Mach. Learn., 2019. 24

Chien-Yao Wang, Hong-Yuan Mark Liao, Yueh-Hua Wu, Ping-Yang Chen, Jun-
Wei Hsieh, and I-Hau Yeh. Cspnet: A new backbone that can enhance learning
capability of cnn. In IEEE Conf. Comput. Vis. Pattern Recog. Worksh., 2020. 7
Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang, Chaorui Deng, Yang
Zhao, Dong Liu, Yadong Mu, Mingkui Tan, Xinggang Wang, et al. Deep high-
resolution representation learning for visual recognition. IEEE Trans. Pattern
Anal. Mach. Intell., 43(10):3349-3364, 2020. 7

Qilong Wang, Banggu Wu, Pengfei Zhu, Peihua Li, Wangmeng Zuo, and Qinghua
Hu. Eca-net: Efficient channel attention for deep convolutional neural networks.
In IEEE Conf. Comput. Vis. Pattern Recog., 2020. 7, 19

Xijaosen Wang and Kun He. Enhancing the transferability of adversarial at-
tacks through variance tuning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 1924-1933, 2021. 6, 17

Futa Waseda, Sosuke Nishikawa, Trung-Nghia Le, Huy H Nguyen, and Isao
Echizen. Closer look at the transferability of adversarial examples: How they
fool different models differently. In Proceedings of the IEEE/CVFE Winter Con-
ference on Applications of Computer Vision, 2023. 2, 3, 26

Ross Wightman. Pytorch image models. https://github.com/rwightman/
pytorch-image-models, 2019. 2, 6, 7, 18

Ross Wightman, Hugo Touvron, and Hervé Jégou. Resnet strikes back: An
improved training procedure in timm. In Adv. Neural Inform. Process. Syst.
Worksh., 2021. 24

Yuxin Wu and Kaiming He. Group normalization. In Eur. Conf. Comput. Vis.,
2018. 1,7

Saining Xie, Ross Girshick, Piotr Dollar, Zhuowen Tu, and Kaiming He. Aggre-
gated residual transformations for deep neural networks. In IEEE Conf. Comput.
Vis. Pattern Recog., 2017. 7

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

Similarity of Neural Architectures using Adversarial Attack Transferability 35

[118]

[119]
[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

I Zeki Yalniz, Hervé Jégou, Kan Chen, Manohar Paluri, and Dhruv Mahajan.
Billion-scale semi-supervised learning for image classification. arXiv preprint
arXiv:1905.00546, 2019. 9, 24

Fisher Yu, Dequan Wang, Evan Shelhamer, and Trevor Darrell. Deep layer ag-
gregation. In IEEE Conf. Comput. Vis. Pattern Recog., 2018. 7

Ruonan Yu, Songhua Liu, and Xinchao Wang. Dataset distillation: A compre-
hensive review. arXiv preprint arXiw:2501.07014, 2023. 27

Weihao Yu, Mi Luo, Pan Zhou, Chenyang Si, Yichen Zhou, Xinchao Wang, Jiashi
Feng, and Shuicheng Yan. Metaformer is actually what you need for vision. In
IEEE Conf. Comput. Vis. Pattern Recog., 2022. 7

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe,
and Youngjoon Yoo. Cutmix: Regularization strategy to train strong classifiers
with localizable features. In Int. Conf. Comput. Vis., 2019. 9, 24

Sangdoo Yun, Seong Joon Oh, Byeongho Heo, Dongyoon Han, Junsuk Choe, and
Sanghyuk Chun. Re-labeling imagenet: from single to multi-labels, from global
to localized labels. In IEEE Conf. Comput. Vis. Pattern Recog., 2021. 25
Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In Brit. Mach.
Vis. Conf., 2016. 7

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup:
Beyond empirical risk minimization. In Int. Conf. Learn. Represent., 2018. 9, 24
Hang Zhang, Chongruo Wu, Zhongyue Zhang, Yi Zhu, Haibin Lin, Zhi Zhang,
Yue Sun, Tong He, Jonas Mueller, R. Manmatha, Mu Li, and Alexander Smola.
Resnest: Split-attention networks. In IEEE Conf. Comput. Vis. Paltern Recog.
Worksh., 2022. 7

Linjun Zhang, Zhun Deng, Kenji Kawaguchi, Amirata Ghorbani, and James Zou.
How does mixup help with robustness and generalization? In Int. Conf. Learn.
Represent., 2021. 9

Lei Zhang, Jie Zhang, Bowen Lei, Subhabrata Mukherjee, Xiang Pan, Bo Zhao,
Caiwen Ding, Yao Li, and Dongkuan Xu. Accelerating dataset distillation via
model augmentation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 11950-11959, 2023. 27

Qilong Zhang, Xiaodan Li, Yuefeng Chen, Jingkuan Song, Lianli Gao, Yuan He,
and Hui Xue. Beyond imagenet attack: Towards crafting adversarial examples
for black-box domains. arXiv preprint arXiv:2201.11528, 2022. 6, 17, 18
Richard Zhang. Making convolutional networks shift-invariant again. In Int.
Conf. Mach. Learn., 2019. 7

Zizhao Zhang, Han Zhang, Long Zhao, Ting Chen, Sercan O Arik, and Tomas
Pfister. Nested hierarchical transformer: Towards accurate, data-efficient and
interpretable visual understanding. In Proceedings of the AAAI Conference on
Artificial Intelligence, 2022. 7

Bo Zhao and Hakan Bilen. Dataset condensation with differentiable siamese
augmentation. In International Conference on Machine Learning, pages 12674—
12685. PMLR, 2021. 27

Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. Dataset condensation with
gradient matching. arXiv preprint arXiv:2006.05929, 2020. 27

	Similarity of Neural Architecturesusing Adversarial Attack Transferability

