
Longer-range Contextualized Masked Autoencoder

Taekyung Kim⋆ Sanghyuk Chun Byeongho Heo Dongyoon Han⋆

NAVER AI Lab

Abstract

Masked image modeling (MIM) has emerged as a
promising self-supervised learning (SSL) strategy. The
MIM pre-training facilitates learning powerful represen-
tations using an encoder-decoder framework by randomly
masking some input pixels and reconstructing the masked
pixels from the remaining ones. However, as the encoder is
trained with partial pixels, the MIM pre-training can suf-
fer from a low capability of understanding long-range de-
pendency. This limitation may hinder its capability to fully
understand multiple-range dependencies, resulting in nar-
row highlighted regions in the attention map that may incur
accuracy drops. To mitigate the limitation, We propose a
self-supervised learning framework, named Longer-range
Contextualized Masked Autoencoder (LC-MAE). LC-MAE
effectively leverages a global context understanding of vi-
sual representations while simultaneously reducing the spa-
tial redundancy of input at the same time. Our method
steers the encoder to learn from entire pixels in multiple
views while also learning local representation from sparse
pixels. As a result, LC-MAE learns more discriminative
representations, leading to a performance improvement of
achieving 84.2% top-1 accuracy with ViT-B on ImageNet-
1K with 0.6%p gain. We attribute the success to the en-
hanced pre-training method, as evidenced by the singular
value spectrum and attention analyses. Finally, LC-MAE
achieves significant performance gains at the downstream
semantic segmentation and fine-grained visual classifica-
tion tasks; and on diverse robust evaluation metrics. Our
code will be publicly available.

1. Introduction

Triggered by successful transitions of Transformer [47] into
vision domains [6, 16], a plethora of effective training
strategies for Transformer have emerged [8, 10, 21, 43, 44].
Recent advances in masked image modeling (MIM) [3, 21,
54, 58] noticeably show great success in self-supervised
learning (SSL) of Vision Transformers (ViT) by transferring

⋆Equal contribution

the knowledge of masked language modeling [13]. Concep-
tually, MIM tasks consist of two parts; randomly masking
out a part of inputs (e.g., 75% of input pixels); and predict-
ing the masked inputs by the decoder. This simple strategy
enables a model to learn strong representations through the
challenging task.

However, MIM strategies often encounter challenges
such as short-range dependency on attention and limited
long-rage context of the whole image. For example, Liu
et al. [32] revealed that masked autoencoder (MAE) [21],
a state-of-the-art MIM method, exhibits shorter average at-
tention distances. Furthermore, we can observe that the at-
tention pattern by MAE reveals extremely local behavior
(See Fig. 1). In other words, the MAE-trained attention
mechanism less integrates information across the entire im-
age pixels and tends to focus on specific input regions (See
Fig. 1b). This is presumably attributed to MIM, primarily
dedicated to predicting low-level pixel details (e.g., color
or texture) without a comprehensive understanding of less-
regional information (e.g., the input structure or shape).

We aim to understand the chronic shortage in long-range
dependency and how it affects MIM. We illustrate that
vanilla MIM methods appear to lack longer-range depen-
dency, while other training methods (e.g., DeiT [43], MoCo
v3 [10]) do not. Drawing from this, we introduce a simple
solution to the short-range dependency and observe how it
helps MIM to mitigate the issue. Our proposed Longer-
range Contextualized Masked Autoencoder (LC-MAE) en-
hances the sub-optimal representation learning by offering
longer-range context supervision extracting general context
from the entire pixels to learn more context-generalized rep-
resentations.

During training, LC-MAE minimizes the discrepancy
between the encoded general context representations and
the sparse representation processed by the online encoder
from different views while performing MIM with a decoder.
This ensures providing more contextualized visible tokens
for mask tokens to attend to. The target network encodes
a general representation of all pixels from a strongly aug-
mented view to provide context information less dependent
on regional changes like color distortion. In contrast, the
online network encodes a sparse and unmasked view, and
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(a) Input (b) MAE (c) LC-MAE (Ours)

Figure 1. MAE lacks comprehensive region-wide attention. We verify how attention appears differently in MAE corresponding to given
queries. (a) The first column denotes the example images with different queries (red points), randomly picked patch indices. (b-c) Every set
of three columns represents the highest attended maps from different heads. The turtle images have a foreground and two upper and lower
background queries; the bird images have two foreground queries (upper two rows) and one background query. MAE shows localized
attention maps but fails to provide comprehensive coverage of either foreground or background.

the decoder reconstructs the masked pixels using the en-
coded features, similar to He et al. [21]. We presume that
our strategy promotes the learning of the encoder by incor-
porating longer-range context supervision, allowing the tar-
get network to provide a broad context for the entire pixels.

We verify the effectiveness of LC-MAE by pre-training
ViT networks [16] on the ImageNet-1K benchmark [40].
Given our method’s weight on improving the baseline MIM,
LC-MAE-trained ViT-B/16 successfully improves linear
evaluation (+2%p) and fine-tuning (+0.6%p) performance
gains on ImageNet-1K over MAE. Our fine-tuning result
also achieves comparable or outperformed ImageNet-1K
validation accuracy (84.2%) compared with other state-of-
the-art methods. LC-MAE can be transferred to the multiple
fine-grained classifications and show distinguished trans-
ferability. LC-MAE further shows superior transferability
and tuning robustness on INaturalist datasets. We further
transfer our pre-trained model to the semantic segmentation
task on ADE20K [57] and show 48.6% mIoU, a solid re-
sult in the ViT-B scale. As another benefit, LC-MAE suc-
cessfully realizes robust training, which results in superior
robustness results on two in-distribution benchmarks, five
out-of-distribution benchmarks, and SI-Score [14].

2. Preliminary

Despite MIM’s strong performance, we claim it still lacks
strong attention capability after pretraining, particularly for
comprehensive region-wide dependency. The upcoming
spatial attention map visualizations motivate our method.

2.1. Motivation

Attention map visualizations. The attention map visual-
ization qualitatively reveals how a model reacts to queries
and reflects the learning dynamics. Fig. 1 (b) shows the
attention maps concerning the given query in Fig. 1 (a)
by MAE [21]. We exploit self-attention in the last block
for visualization in the official ViT-B/16 MAE and visual-
ize maps with 480× 480 images from ImageNet-1K.

We observe that MAE shows narrow highlight regions
for the given queries. Specifically, when a query is selected
in the foreground (the 1st, 4th, and 5th rows), MAE only
highlights the near patches of the given query; when a query
is selected even in the background (the 2nd, 3rd, and 6th
rows), we observe the same phenomenon, namely, MAE
only focuses on the near patches of the given query. Based
on this, we argue that MAE’s attention lacks the longer-
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range dependency. This may incur a lack of global under-
standing of the entire foreground or background concerning
localizability.

2.2. Masked Image Modeling (MIM) and Beyond

We begin with a generalized formulation of MIM, address-
ing the limitation shown in the formulation. We then present
our simple solution to remedy the limitation.

Formulation. Given an image from an augmented view
u, we patchify the image into N non-overlapping patches
U = {ui}Ni=1. We randomly pick masked patches M with
a high masking ratio r ∈ (0, 1), where M ⊂ {1, 2, ..., N}
and |M| = ⌊rN⌋. We denote the masked image patches
as Um = {ui : i ∈ M} and the remaining patches as
Ur = {ui : i ∈ {1, 2, ..., N}, i /∈ M}. The remaining
patches are fed into the encoder fθ and become encoded to-
kens Te = fθ(Ur). The encoded tokens are concatenated
with mask tokens mi corresponding to the positions of i-
th masked patches (entire patches Um ∪ Ur can be fed into
the encoder [54]). The only mask tokens predict the image
patches through the decoder dϕ. We denote i-th decoded
mask token and input mask token as md

i and mi where
Td ∪ {md

i }i∈M = dϕ(Te ∪ {mi}i∈M), informally. Here,
Td is a set of decoded visible tokens. Now, the MIM pre-
training objective is defined as follows:

LMIM =
∑
i∈M

||md
i − ui||22, (1)

where mi are shared for all the positions.

Our simple solution. Eq. (1) aims to provide effective lo-
cal supervision for masked tokens by reconstructing image
patches via the decoder dϕ with limited information. How-
ever, this could lead to underutilizing complete image infor-
mation (i.e., longer-range contexts) due to lacking abundant
remaining tokens at the same time; thus, its localizability
is confined to a limited range, extending only to adjacent
visual tokens from the anchor (query). We contend that it
is because only reconstructed masked tokens are used for
the actual loss calculation. Furthermore, the MIM loss en-
forces the reconstructed masked tokens to regress the cor-
responding target tokens in a patch-wise manner, lacking to
establish strong neighboring dependencies and thereby pro-
viding inadequate supervision. We employ another loss that
is expected to aid LMIM by giving expansive supervision to
visible tokens from the entire visual tokens:

Lours =
∑
i∈M

||md
i − ui||22 + αD(Te, g(Um ∪ Ur)), (2)

where D(·, ·) and g(·) denote a distance function and a
global encoder. We here straightforwardly give encoded

comprehensive supervision from entire tokens to visible to-
kens Te. During training, the expansively supervised Te

contains extended token information so that mask tokens
can leverage. This potentially gives additional localization
capability beyond what the baseline possesses. The options
for choosing D and g are indeed diverse, but we take the
simplest way in the next section. Eq. (2) can involve both
visible and mask tokens, but we focus on visible tokens to
prevent learning collapse in mask tokens.

3. Method
In this section, we introduce Longer-range Contextualized
Masked Autoencoder (LC-MAE) that addresses the short-
range dependency issue in MAE.

Global contextualized supervision. The crux of our so-
lution lies in providing a more comprehensive contextual-
ization of entire visual tokens. Here, we opt for the ele-
ments in the newly involved loss (dubbed global guidance
loss LGG) in Eq. (2). First, for the global encoder g, we im-
plement this by simply reusing the encoder fθ to give the
supervision back to fθ. It performs like a token-level re-
gression between the encoders. We opt for an efficient yet
strong option, momentum networks [7, 10, 18, 20]. The ar-
chitecture consists of a momentum encoder and MLP head,
which shares a nearly identical architecture to the online
network.

Additionally, we augment the entire image patches from
U to V to enhance the generalization of the encoder and
avoid collapse. For the global latent features, the view v is
patchified into V = {vi}Ni=1, respectively. Unlike a gen-
eral MIM process, the whole patches V are encoded by
the global encoder g; we denote the whole encoded to-
kens as TV

g = g(V ), where TV
g = {tVi }Ni=1. Finally, the

MLP head h yields global representations v̂ = h(ṽ), where
ṽ = 1

NΣN
i=1t

V
i is globally pooled or each set of representa-

tions ṽ = TV
g . Alternatively, using aligned tokens [12] for

v̂ could benefit performance, but we simply use a pooled
token.

We refer to the process as delivering global contextual-
ized supervision, which involves utilizing information from
entire tokens to facilitate training through comprehensively
contextualized guidance.

Sparse tokens that learn broad contexts. Our encod-
ing process obtains regional representations TUr

e = fθ(Ur)
from sparsified tokens Ur. Similar to computing global
guiding representations, we aggregate the latent embed-
dings uθ = 1

|TUr
e |

Σt∈TUr
e

t through averaging. We follow
the previous studies preventing training collapse by apply-
ing an MLP head hθ to obtain ûθ = hθ(uθ), forming archi-
tectural asymmetry to avoid collapse [9, 18]. LC-MAE can
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Figure 2. Framework overview. We introduce global contextualized guidance to enhance masked image models. Our method performs
masked image modeling with undistorted sparse tokens while another global encoder guides the online network using a distorted global
view. We build the networks using simple yet widely-used MLP head architectures [8–10, 18] on top of encoders to avoid collapse. We opt
for a simple choice where the additional global momentum encoder mirrors the online encoder, while we may alternatively employ various
options. We borrow a flamingo image from n02007558 class in ImageNet-1K.

be interpreted as utilizing masked tokens for MIM interact-
ing with sparse visual tokens that are employed to condense
expanded context information.

On contextual discrepancies across views. We aimed
to provide global contextualized supervision to visible to-
kens that correspond to the original view of the masked to-
kens. However, MIMs generally use random resized crop
(RRC) [41] for giving geometric variation; we argue that
using RRC may not align with our intention and could hin-
der learning due to divergent views providing limited shared
information [9, 44]. Thus, we adopt simple resized crop
(SRC) [44] instead of RRC. We conjecture the latent fea-
tures from remaining sparse tokens can be more reliably
guided by the semantics from the global latent. We will
observe that SRC harms MAE but improves LC-MAE.

Objective function. We finalize our objective by choos-
ing the distance function D in Eq. (2). We apply the nor-
malized ℓ2-distance for the feature distance (i.e., Cosine
distance). We have the aggregated global representation v̂
and sparse one ûθ, and their ℓ2-normalized version ūθ and
v̄, respectively. Our global guidance loss LGG computes the
feature distance between normalized representations ūθ and
v̄, formulated as LGG = ||ūθ − v̄||22. We conjecture that LC-
MAE is agnostic to the choice of distance function since
the fundamental principle of it works regardless of the dis-

tance functions, and the InfoNCE or Smoothed ℓ1 losses
also show compatibility with LC-MAE. The final objective
function is:

min
θ

LMIM + αLGG, (3)

where α controls the balance of the global guidance loss
and the masked image modeling loss. The study on α gives
the best fine-tuning performance with 0.25; however, it is
insensitive to the choice of α; for example, α = 0.25 and
0.5 shows only 0.1% difference of fine-tuning performance
using the ViT-B/16 backbone. We support all our design
choices in the ablation studies in Table. 5. Our method is
also applicable to SimMIM [54]-like methods with perfor-
mance improvements (see Appendix for details).

3.1. Comparisons with prior arts

Prior to transitioning to our experiments, we outline the dis-
tinctions between our work and closely related studies. Sev-
eral studies have been conducted recently employing mul-
tiple encoders, such as our online and target encoders. For
example, a line of research excludes using additional data
and employs an additional tokenizer module for the recon-
struction supervision [2, 58].

Zhou et al. [58] proposed iBOT that jointly trains the
target encoder and the online tokenizer. The main moti-
vation is to align the full representations of multi-view in-
stances among 12 different views while additionally per-
forming masked feature reconstruction. Thus, iBOT needs
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Method
Pre-training

epochs (ViT-S/B/L)
Supervision ViT-S ViT-B ViT-L ADE20K

Supervised models
DeiT [43] ICML 2021 - Label 79.9 81.8 - -
DeiT-III [44] ECCV 2022 - Label 81.4 83.8 84.2 49.3
Cosub [45] CVPR 2023 - Label 81.5 84.2 85.3 49.3

Self-supervised models
MoCo v3 [10] ICCV 2021 300 / 300 / 300 Pixel 81.4 83.2 84.1 47.3
DINO [8] ICCV 2021 800 / 800 / N/A Pixel 81.5† 82.8† - 46.8
iBOT [58] ICLR 2022 3200 /1600 / 1000 Feature 82.0 84.0† 84.8† 50.0†

MAE [21] CVPR 2022 1600 /1600 / 1600 Pixel 81.4‡ 83.7‡ 85.6‡ 48.1
SimMIM [54] CVPR 2022 800 / 800 / N/A Pixel 81.9‡ 83.8 - -
MaskFeat [51] CVPR 2022 N/A / 1600 / 1600 Feature - 84.0 85.7 -
ExtreMa [52] arXiv 300 / 300 / N/A Feature 81.8 83.7 - 47.9
data2vec [2] ICML 2022 800 / 800 / 1600 Feature 81.8‡ 84.1‡ 86.6 48.3‡

SemMAE [31] NeurIPS 2022 N/A / 800 / N/A Pixel - 83.3 - 46.3
SdAE [11] ECCV 2022 N/A / 300 / N/A Pixel - 84.1† - 48.6†

MSN [1] ECCV 2022 N/A / 600 / N/A Feature - 83.4 - -
BootMAE [15] ECCV 2022 N/A / 800 / 800 Pixel + Feature - 84.2 85.9 49.1
CAN [36] arXiv N/A / 1600 / 800 Pixel - 83.6 84.7 -
ConMIM [56] ICLR 2023 300 / 800 / 1600 Dictionary 82.0 83.7 85.5 46.0
SIM [42] CVPR 2023 N/A / 1600 / N/A Feature - 83.8 - -
HPM [50] CVPR 2023 N/A / 800 / 800 Pixel - 84.2 85.8 48.5

LC-MAE (ours) - 400 / 1600 / 1600 Pixel 82.0 84.2 86.0 49.5

Table 1. Comparisons with previous models on ImageNet-1K. We compare LC-MAE with the previous results that used vanilla Vision
Transformer architectures. All models were pre-trained and fine-tuned on ImageNet-1K.We use the ViT-S/16, ViT-B/16, and ViT-L/16
architectures and a resolution of 224×224. † denotes the models pre-trained using multi-crop augmentation. ‡ denotes our reproduction
results. We highlight the best numbers (in boldface) and the second-best numbers (in underlined). For a fair comparison, we did not
compare methods using modules trained on extra data, such as CLIP [38] or VQGAN [17].

multi-crops varying in diverse scales and augmentations.
iBOT involves only mask tokens to learn target informa-
tion, which incurs learning partial information, but we nev-
ertheless speculate that leveraging multi-crops diminishes
this issue. In contrast, our aim is to employ visible tokens
to reinforce the understanding of longer-range context by
offering complete information from a single view.

Baevski et al. [2] proposed data2vec that performs patch-
wise feature prediction via masked tokens. Despite the tar-
get features being generated from entire images, data2vec
may implicitly guide MIM with the global context. Specifi-
cally, we presume only mask tokens contribute to regressing
the context supervision, so the interaction between mask
tokens and visible tokens lacks utilizing the given contex-
tualized information. Therefore, the patch-wise regression
to the token representations may not adequately establish
strong neighboring dependencies. We conjecture this even-
tually leads to inferior localization performance.

4. Experiment

In this section, we demonstrate our method by pre-training
and fine-tuning on ImageNet-1K and conduct extensive

comparisons with state-of-the-art methods. We further
transfer our models to the ADE20K segmentation and vari-
ous downstream datasets to confirm transferability.

4.1. ImageNet-1K Classification

Architecture. We use the standard Vision Transformer
(ViT) [16] with a patch size of 16 for all experiments (i.e.,
ViT-B/16) to fairly compare with prior arts. We use the 8-
layer transformer decoder [21] for masked image modeling.
We further adopt online and global MLP heads on the top
of the encoders to aggregate global context from represen-
tations; each consists of two and four fully-connected lay-
ers with the embedding dimension of 4096, batch normal-
ization layers [25], and ReLUs [30] following the previous
methods [8, 10, 18]. Note that LC-MAE works even with
symmetric heads. All the decoder and MLP heads are only
used during training.

Pre-training setup. We follow the identical ImageNet-
1K [40] pre-training protocol1 [21]. Our model is pre-
trained for 1600 epochs with 40 warmup epochs, batch

1We use the publicly available codebase in https://github.
com/facebookresearch/mae
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size of 4096, and input resolution of 224×224. We use
AdamW [34] with momentum (0.9, 0.999). The learning
rate is set to 1.5×10−4 with cosine learning rate decay [33].
We adopt a layer-wise learning rate decay of 0.65. We set
a mask ratio for Eq. (1) to 0.75, a momentum decay rate τ
in the target network to 0.996, and the weight of our global
guidance loss (α in Eq. (3)) to 1.0 and 0.25 for the ViT-S/16
and ViT-B/16 architectures, respectively. We employ the
simple resized crop [44] for geometric augmentation, color
jittering, and the three augment [43] consists of Gaussian
blur, grayscale, and solarization. All models are pre-trained
using 8 V100-32GB GPUs.

Results. We compare our method with previous SSL
methods [1, 2, 8, 10, 11, 15, 21, 31, 36, 42, 50–52, 54,
56, 58]. Table 1 shows the evaluation results on the ViT-
S/B/L backbones. Our LC-MAE achieves an 82.0%, 84.2%,
and 86.0% top-1 accuracy on ViT-S/16, ViT-B/16, and ViT-
L/16, which improves 0.6%p, 0.6%p, and 0.4%p over the
baseline, respectively. Moreover, LC-MAE outperforms
other self-supervised learning methods by a large margin
except for some masked feature models. This comes to a
head with a smaller ViT-S/16, where most of the results
are saturated, but this is presumably due to the low capa-
bility of the backbone and the high flexibility of masked
feature models. LC-MAE would take advantage of further
improvements using masked feature models as the baseline.
The results highlight the efficacy of our proposed global
contextualized supervision in enhancing MIM, which show-
cases its significant potential for further improvements.

Computational costs. Our method includes extra com-
putation from forward inference with images, so there is
a slight increase in computational demands. However, our
method achieves a top-1 accuracy of 83.6% at 400 epochs,
which matches MAE’s accuracy at 1600 epochs, despite
our significantly shorter GPU wall time. Specifically, our
method takes 119 hours to complete 400 epochs of train-
ing, which is roughly half the training time of MAE’s 1600
epochs, which requires 223 hours.

4.2. ADE20K Semantic Segmentation

To validate the transferability of our pre-trained model to
dense prediction tasks, we evaluate semantic segmentation
performances on ADE20K [57]. We follow the standard
training protocol [21]; the models are fine-tuned for 160K
iterations using UperNet [53] with a batch size of 16 and
a resolution of 512×512. Other detailed hyper-parameters
for training are listed in Appendix. The rightmost column
in Table 1 shows the mIoU performance comparison. LC-
MAE also outperforms the competing methods, including
SSL and supervised learning methods. This outcome can
be attributed to the improved dense prediction capability.

Method iNat 2018 iNat 2019 iNat 2021-mini

BYOL 69.8 (68.6±0.9) 77.4 (76.7±0.8) 70.5 (69.1±1.1)

MoCo v3 70.1 (69.4±0.5) 77.6 (77.2±0.4) 70.9 (70.5±0.5)

DINO† 72.1 (71.9±0.2) 79.4 (79.0±0.4) 73.0 (72.8±0.1)

iBOT† 73.8 (73.5±0.2) 79.9 (79.5±0.4) 74.5 (74.4±0.1)

data2vec 75.2 (74.5±0.7) 80.6 (80.0±0.5) 76.2 (75.5±0.9)

MAE 74.6 (74.5±0.1) 80.2 (80.0±0.1) 75.7 (75.5±0.2)

LC-MAE 75.8 (75.3±0.3) 81.0 (80.5±0.4) 76.7 (76.3±0.3)

Table 2. Transfer learning results on iNaturalists. We further
present the end-to-end fine-tuning accuracies on the iNaturalist
2018, iNaturalist 2019, and mini iNaturalist 2021 datasets [46].
We report the best results along with the mean ± std of the set
of accuracies obtained from grid searches for each method. † de-
notes the models pre-trained using multi-crop augmentations. Our
method consistently outperforms the competitors in terms of the
best accuracies, further showcasing remarkable tuning robustness.

4.3. Transfer Learning

iNaturalist datasets. To further compare the transferabil-
ity of learned representations, we measure image classifica-
tion accuracies by fine-tuning the ImageNet-1K pre-trained
models on iNaturalist 2018, iNaturalist 2019, and mini iNat-
uralist 2021 [46], which are highly imbalanced with dif-
ferent number of images per class. We compare LC-MAE
with MoCo v3 [10], BYOL [18], DINO [8], iBOT [58], and
MAE [21]. All the models are pre-trained ViT-B/16 with a
resolution of 224×224. We report the maximum accuracy
and the mean and standard deviation of the accuracies ob-
tained by grid searches of learning rates and weight decay,
following the protocol [28]. Table 2 shows LC-MAE out-
performs the competitors across all datasets, which reveals
superior transferability; moreover, our model benefits tun-
ing robustness.

Fine-Grained Visual Classification (FGVC) datasets.
We further validate fine-tuning classification accuracies on
CIFAR-10 [29], CIFAR-100 [29], CUB-200 [48], Air-
craft [35], Birds [24], Flowers [37], and Dogs [27] follow-
ing the same evaluation protocol as above. Table 3 show-
cases LC-MAE achieves the best number on average and
outstanding numbers overall, which shows improved trans-
ferability and tuning robustness across datasets again.

5. Analysis and Discussion
Here we provide ablation studies and analyses to give some
intuitions from how global contextualized supervision actu-
ally works through singular value spectrums and robustness
evaluations.

5.1. Robustness Evaluation

We evaluate the robustness of various methods, including
DINO [8], iBOT [58], MAE [21], and data2vec [2] with
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Method Aircraft Birds CUB-200 CIFAR-10 CIFAR-100 Dogs Flowers Average

DINO† 87.0 (86.0±0.6) 83.9 (83.4±0.5) 85.1 (84.9±0.3) 99.0 (98.9±0.1) 91.3 (90.7±0.5) 84.8 (84.6±0.3) 98.8 (98.7±0.1) 90.0
iBOT† 87.3 (86.7±0.6) 85.5 (85.1±0.5) 85.9 (85.5±0.3) 99.2 (98.8±0.6) 92.0 (91.1±0.9) 86.0 (85.7±0.3) 99.0 (99.0±0.1) 90.7
MAE 88.1 (87.3±0.9) 84.2 (84.0±0.3) 84.6 (84.3±0.2) 98.8 (98.7±0.1) 90.0 (89.7±0.3) 86.8 (86.4±0.3) 98.1 (97.8±0.3) 90.1
data2vec 87.3 (86.6±0.7) 84.1 (83.5±0.5) 84.4 (83.9±0.4) 98.8 (98.7±0.1) 91.2 (91.0±0.2) 85.7 (85.3±0.3) 96.7 (94.4±3.3) 89.7

LC-MAE 89.2 (88.3±0.9) 86.0 (85.3±0.6) 86.5 (85.7±0.6) 99.1 (98.9±0.1) 91.0 (90.7±0.4) 87.4 (86.7±0.5) 98.4 (98.2±0.2) 91.1

Table 3. Transfer learning results. We present the end-to-end fine-tuning accuracies on multiple datasets, reporting the best results along
with the mean ± std of the accuracies from grid searches. Our method mostly outperforms the competitors at the best accuracies, further
showcasing the robustness among different training hyper-parameters. † denotes the models pre-trained using multi-crop augmentation.

IN-1k↑ IN-V2↑ IN-Real↑ IN-A↑ IN-O↑ Sketch↑ IN-R↑ Cocc↑ ObjNet↑ SI-size↑ SI-loc↑ SI-rot↑

DINO† 83.1 72.8 87.6 36.3 60.7 35.7 48.2 77.8 36.4 57.8 37.0 43.8
IBOT† 83.5 73.5 87.9 39.4 62.0 37.8 50.2 78.6 37.1 58.2 37.6 43.9
MAE 83.7 72.9 88.2 36.7 65.4 35.9 48.9 78.4 37.6 58.0 38.7 42.7
data2vec 84.1 74.2 88.5 41.6 62.2 38.7 53.0 79.1 40.3 57.9 38.6 43.8

LC-MAE 84.2 74.2 88.6 42.5 64.1 38.2 52.1 79.2 38.9 59.8 40.7 44.9

Table 4. Robustness evaluation. We evaluate the robustness of the ImageNet-1K-pretrained representative methods: DINO, iBOT, MAE,
and data2vec with our LC-MAE on in-distribution generalization (IN-V2/Real) and out-of-distribution (IN-A/IN-O/Sketch/R/Cocc/Obj)
benchmarks. We also evaluate the capability to detect spurious correlations with background on SI-Score metrics [14]. We highlight the
best numbers (in boldface) and the second-best numbers (in underlined). † denotes the models pre-trained using multi-crop augmentation.
Ours surpasses others significantly than indicated by the ImageNet-1K numbers, particularly more on localization-related metrics.

LC-MAE on various robustness benchmark. We verify how
our method impacts model robustness. We employ two
in-distribution benchmarks including ImageNet-V2 [39]
and ImageNet-Real [5]) and four out-of-distribution bench-
marks ImageNet-A [23], ImageNet-O [23], ImageNet-
R [22], ImageNet-Sketch [49], and ObjectNet [4]. We fur-
ther use SI-Score [14] to test spurious correlations with
the background. Lastly, we evaluate the center occlusion
benchmark that zeroes the center patch in the ImageNet-1K
evaluation images. As shown in Table 4, LC-MAE achieves
outstanding performance on all the benchmarks.

5.2. Ablation Study

Here, we conduct ablation studies of LC-MAE pre-training
under various available configurations. We select ViT-B/16
as the base model and train it for 400 epochs on ImageNet-
1K as the fixed pre-training setup. Each model is then in-
dividually pre-trained. We report the top-1 fine-tuning and
linear probing accuracies for each study.
Loss function. We first explore various losses for the
global guidance loss in Table 5a. While all objectives yield
considerable performance as expected above, the cosine dis-
tance of latent representations of global and partial informa-
tion works best when pre-training by LC-MAE.
Type of global supervision. We study the effectiveness of
various guidance approaches in Table 5b. We mainly com-
pare token-wise supervision and globally aggregated super-
vision. While all the types yield performance gains, the
global guidance works the best, improving 0.7%p in fine-

tuning even only with 400 epochs. The global guidance
outperforms the combination of token-wise and global guid-
ance, implying that the additional token-wise guidance may
conflict with the global one, which is presumably due to the
alignment between the set of tokens.
Masking ratio at target encoder. We argue the infor-
mation in the target latent representations should remain
globally. Table 5c shows that the model without masking
outperforms all the counterparts.Moreover, the fine-tuning
accuracy of the models with masking even underperforms
the baseline, implying that transferring coarse information
carelessly may harm the capability of learning representa-
tion.
Tokens for global guidance. We mainly use the visible to-
kens for giving guidance but study whether CLS-token can
be an alternative in Table 5d. We observe using visible to-
kens is preferred for LC-MAE. Considering latent features
undergo masked auto-encoding, these results imply that ex-
plicitly using global information is more effective than us-
ing implicit information via CLS-token.
Guided tokens. We investigate which tokens should learn
the guiding information, considering both visible and mask
tokens. While we designed with visible tokens, Table 5e
illustrates that training solely with visible tokens yields a
superior outcome, aligning with our previous expectation.
Image crop type. This study highlights how perfor-
mance is affected by the disparity between the two views in
our method. There would be many comparing options, we
choose Random resized crop (RRC) [41] and simple resized
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Case ft lin

None 82.8 61.5
InfoNCE 83.0 66.7
Smoothed ℓ1 83.2 60.2
Cosine distance (Cos) 83.5 67.9

(a) Loss function. “Cos” works the best.

Case ft lin

None 82.8 61.5
Token-wise guidance 83.2 64.1
Global guidance 83.5 67.9
Token-wise + Global 83.1 66.6

(b) Type of guidance. Our choice beats others.

Case Mask ratio ft lin

None - 82.8 61.5
Global guidance 0 83.5 67.9
Global guidance 0.5 82.6 63.2
Global guidance 0.75 82.5 63.8

(c) Target’s masking ratio. Global encoder needs
noncorrupted views.

Case ft lin

None 82.8 61.5
w/ CLS token 83.2 71.0
w/ visual tokens (VTs) 83.5 67.9

(d) Tokens for guidance. Using visual to-
kens works better.

Case ft lin

None 82.8 61.5
w/ visible and mask tokens 83.0 67.2
w/ visible tokens only 83.5 67.9

(e) Guided tokens. Guiding visible tokens
performs better.

Method Epochs Views ft linRRC SRC

MAE 400 ✓ 82.8 61.5
MAE 400 ✓ 82.5 64.2

LC-MAE 400 ✓ 83.4 67.1
LC-MAE 400 ✓ 83.5 67.9

(f) View discrepancy. Ours benefits reduced dif-
ferences among views.

Table 5. Ablation studies. All the studies report fine-tuning (ft) and linear probing (lin) accuracies for each configuration which are
pre-trained with ViT-B/16. All the backbones are pre-trained for 400 epochs. We mark the default settings for the study in gray .

crop (SRC) [44] for comparison. Table 5f shows the model
pre-trained with SRC exceeds the fine-tuning accuracy of
the case of RRC. Since RRC is more compatible with MAE
than SRC, performance improvements are not observed in
MAE. Our method benefits from SRC, which indicates that
the global information needs to align closely with the view
of the online encoder, thereby facilitating training.

5.3. Spectral Analysis

We provide additional analysis on the learned layer-wise
representations LC-MAE and the baseline. Inspired by
the previous studies [26], we measure the singular values
(SVs) of the covariance of features, i.e., how the features are
spread in the embedding space. More specifically, we com-
pute a feature covariance matrix on ImageNet-1K validation
set (i.e., the covariance matrix has a shape of 50k×50k), and
compute the SVs of the covariance matrix. Fig. 3 shows a
spectrum of log of singular value gaps between MAE and
LC-MAE across the layers. The singular values of LC-
MAE surpass the values of MAE across the rank indices
in the last layers, while both methods have similar singu-
lar values on earlier layers. The results reveal that LC-
MAE have larger singular values at the output-side layers,
indicating a higher rank of the feature space [19, 55]. In
other words, LC-MAE utilizes the output feature space bet-
ter than MAE, owing to the global understanding prompted
by global guidance.

6. Conclusion

We have introduced a novel framework to address the lim-
ited global understanding of images inherent in masked
autoencoders (MAE). We have argued MAE holds short-
range dependency due to lacking a comprehensive under-
standing of entire pixels. By visualizing attention maps,
we have shown that MAE exhibits incomplete coverage of

Figure 3. Singular value (SV) spectrums. We plot the difference
of SVs between the baseline and LC-MAE for each layer, show-
ing large gaps (≥0), particularly for the later layers closer to the
output.

foreground or background regions. We conjectured this is
caused by the potential absence of global context in learned
visible tokens when interacting with mask tokens in self-
attentions. Based on the observation, we have proposed LC-
MAE pre-training method, minimizing the discrepancy be-
tween the global features and sparse visual tokens through
our global guidance loss. The global contextualized su-
pervision enhanced MAE by a large margin on ImageNet-
1K and ADE20K, and LC-MAE significantly outperformed
other state-of-the-art competitors. LC-MAE further offers
significant improvements in transfer learnings, including
the iNatrualist and FGVC datasets. Finally, our analyses
with robust evaluations and spectral analysis demonstrated
that LC-MAE can serve as a simple yet effective supple-
ment for masked image modeling.
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Appendix
This supplementary material includes additional experi-

mental analyses of our proposed method, comparing it with
state-of-the-art self-supervised learning (SSL) methods and
experimental results with detailed setups. We first provide
the attention map visualizations; we then give another appli-
cability of our proposed method, an extra study on balanc-
ing global guidance, and additional implementation details.

A. Further Analysis
In this section, we qualitatively show the improved discrim-
inative power of our model compared with other SSL meth-
ods [2, 8, 21, 58] and LC-MAE through attention map visu-
alization by visualizing all the multi-heads of the last self-
attention block using sample cases.

A.1. On Discriminative of Attention Map

We further visualize the attention maps of the entire heads
of the last self-attention according to given query patches.
We compare the diverse methods to investigate the distinc-
tive trends. Fig. A and Fig. B showcase when the input
queries are from the background of the images, As shown
in Fig. A, models pre-trained with DINO [8] highlight
foreground regions despite the background query, which
reveals DINO broadly aggregates representations across
the image, losing discriminative power. Moreover, iBOT
also suffers from the correlation between the representa-
tions of foreground and background patches, as observed
in Fig. Ab and Fig. Bb. data2vec shows precise local dis-
criminatibility in Fig. Ac, but indiscriminatively highlights
attention in Fig. Bc. While MAE does not confuse fore-
ground and background representations in Fig. Ad, MAE
suffers another confusion in Fig. Bd, which may stem from
lack of global understanding. Besides, LC-MAE shows
enhanced discriminability between foreground and back-
ground patches in both cases.

B. Experiments (cont’d)
This section presents continued experiments that further in-
vestigate the superiority and applicability of our method.
We show another application of global guidance in masked
image modeling beyond MAE. We finally share our experi-
mental regimes for the ImageNet-1k fine-tuning and seman-
tic segmentation experiments on ADE20K.

B.1. Applicablity of Global Guidance

We showcase another use case of our global guidance with
another baseline. We chose a representative masked image
modeling SimMIM [54]. Our aim is to reveal that our solu-
tion is also compatible with other masked image modeling
methods that do not drop mask tokens in the encoder.

Method Pre-training epochs Accuracy (%)

SimMIM 100 81.6
LC-SimMIM (ours) 100 81.8

Table A. Impact of global guidance in SimMIM. To verify the
versatility of our method to other methods, we apply the proposed
global contextualized supervision to training SimMIM. All mod-
els are pre-trained and fine-tuned on ImageNet-1K. We employ
ViT-B/16 trained with the image resolution of 224×224 and the
identical weighting parameter of 0.25 for the global guidance loss
(i.e., LGG).

Case ft lin

0.1 83.2 70.7
0.25 83.5 67.9
0.5 83.4 70.1
1.0 82.9 63.6

Table B. Loss balancing. We study the balance A weight be-
tween global guidance and MIM loss. All the studies report fine-
tuning (ft) and linear probing (lin) accuracies for each configura-
tion which are pre-trained with ViT-B/16. All the backbones are
pre-trained for 400 epochs. We mark the default settings for the
study in gray .

We pre-train the models with SimMIM, which is the
baseline, and SimMim with our method on ImageNet-
1K [40] for 100 epochs and fine-tuned following the fine-
turning recipe of SimMIM [54]. We primitively replace the
masked image modeling part of our framework for MAE
with SimMIM. As shown in Table A, our method improves
SimMIM by 0.2%p despite short pre-training epochs, which
shows the potential applicability of our method on MIMs.

B.2. Balancing global guidance

To give a maximal impact through global guidance loss, we
study an appropriate α in Eq. (3), and Table B shows that a
loss weight of 0.25 works best, and our method’s effective-
ness remains up to 0.5. Moreover, though the highly tilted
loss weights brought relatively degraded performance, these
models work better than a model pre-trained by MAE.

B.3. Additional Implementation Details

Fine-tuning setup for ImageNet-1K classification. We
list the detailed hyper-parameters for fine-tuning on
ImageNet-1K [40] in Table C. Specifically, we use the
AdamW optimizer and a weight decay of 0.05 with a batch
size of 1024. We used a layer-wise learning rate decay of
0.75 for ViT-S/16 and 0.65 for ViT-B/16 and ViT-L/16 We
fine-tune ViT-S/16, ViT-B/16, and ViT-L/16 for 300, 100,
and 50 epochs, respectively.

Detailed setup for ADE20K semantic segmentation.
We provide the detailed hyper-parameters for transfer learn-
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(a) DINO (82.8%) (b) iBOT (84.0%) (c) data2vec (84.1%) (d) MAE (83.6%) (e) Ours (84.2%)

Figure A. Attention visualization for all multi-heads of the last self-attention block. Given a sample and a query (left top on Fig
A.3(a)), We visualize the attention maps of the models (with ImageNet-1K accuracies) pre-trained by DINO [8], iBOT [58], , data2vec [2],
MAE [21], and LC-MAE. Each row presents the corresponding attention map of each head. White circles in the attention maps emphasize
the highlighted foreground regions despite the background query. We use the ViT-B/16 architecture and a resolution of 224×224. We
borrowed a sample image from n2099601 ImageNet-1K class.
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(a) DINO (82.8%) (b) iBOT (84.0%) (c) data2vec (84.1%) (d) MAE (83.6%) (e) Ours (84.2%)

Figure B. Attention visualization for all multi-heads of the last self-attention block. Given a sample and a query (left top on Fig
A.3(a)), We visualize the attention maps of the models (with ImageNet-1K accuracies) pre-trained by DINO [8], iBOT [58], data2vec [2],
MAE [21], and LC-MAE. Each row presents the corresponding attention map of each head. White circles in the attention maps emphasize
the highlighted foreground regions despite the background query. We use the ViT-B/16 architecture and a resolution of 224×224. We
borrowed a sample image from n2422699 ImageNet-1K class. The grid pattern in (c) is presumably induced by the interpolation of the
relative pose bias. 11



ing to the semantic segmentation task on ADE20K [57] in
Table D. We fine-tune UperNet [53] initialized with our pre-
trained model for 160k iterations with a batch size of 16.
Note that we do not employ multi-scale training and test-
ing.

Config Value

Optimizer AdamW
Base learning rate 5e-4 (S), 2.5e-4 (B),

1e-3 (L)
Weight decay 0.05
Optimizer momentum β1, β2 = 0.9, 0.999
Layer-wise learning rate decay 0.75 (S), 0.65 (B, L)
Batch size 1024
Learning rate schedule Cosine decay
Warmup epochs 5
Training epochs 300 (S), 100 (B), 50

(L)
Resolution 224× 224
Augmentation RandAug (9, 0.5)
Label smoothing 0.1
Mixup 0.8
Cutmix 1.0
Drop path 0.1

Table C. Hyper-parameter configurations for end-to-end fine-
tuning on ImageNet-1K. All the numbers are for fine-tuning with
the ImageNet-1k pre-trained backbone to the ImageNet-1K classi-
fication.

Config Value

Optimizer AdamW
Learning rate 1e-4
Weight decay 0.05
Optimizer momentum β1, β2 = 0.9, 0.999
Layer-wise learning rate decay 0.65
Batch size 16
Learning rate schedule Polynomial
Warmup iterations 1500
Training epochs 160k
Resolution 512× 512
Drop path 0.1

Table D. Hyper-parameter configurations for the ADE20K
finetuning. All the numbers are for transfer learning with the
ImageNet-1K pre-trained backbone to the ADE20K semantic seg-
mentation.
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