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Abstract

Vision Transformer (ViT) extracts the final representa-
tion from either class token or an average of all patch to-
kens, following the architecture of Transformer in Natural
Language Processing (NLP) or Convolutional Neural Net-
works (CNNs) in computer vision. However, studies for the
best way of aggregating the patch tokens are still limited
to average pooling, while widely-used pooling strategies,
such as max and GeM pooling, can be considered. De-
spite their effectiveness, the existing pooling strategies do
not consider the architecture of ViT and the channel-wise
difference in the activation maps, aggregating the crucial
and trivial channels with the same importance. In this pa-
per, we present Group Generalized Mean (GGeM) pooling
as a simple yet powerful pooling strategy for ViT. GGeM di-
vides the channels into groups and computes GeM pooling
with a shared pooling parameter per group. As ViT groups
the channels via a multi-head attention mechanism, group-
ing the channels by GGeM leads to lower head-wise depen-
dence while amplifying important channels on the activa-
tion maps. Exploiting GGeM shows 0.1%p to 0.7%p perfor-
mance boosts compared to the baselines and achieves state-
of-the-art performance for ViT-Base and ViT-Large models
in ImageNet-1K classification task. Moreover, GGeM out-
performs the existing pooling strategies on image retrieval
and multi-modal representation learning tasks, demonstrat-
ing the superiority of GGeM for a variety of tasks. GGeM
is a simple algorithm in that only a few lines of code are
necessary for implementation.

1. Introduction
Over the past several years, there has been a break-

through of Transformer networks in the Natural Language
Processing (NLP) domain [5, 19]. It brought great inter-
ests in the computer vision community to exploit the Trans-
former architecture for vision tasks. As a result, Vision
Transformer (ViT) [21] was introduced, and its variants
have shown great success in image recognition [29, 47, 66,
71], self-supervised learning [2, 3, 7, 27, 77, 78], object de-

tection [6, 24, 44, 61, 62], segmentation [9, 64], image com-
pression [35], image retrieval [22,23], and multi-modal rep-
resentation learning [36, 49, 56]. Compared to the previous
standard vision models, such as Convolutional Neural Net-
works (CNNs), recent works have demonstrated that ViT
shows equal or superior performance in image recognition
tasks when equipped with huge number of parameters or
large-scale datasets [21, 57].

The ViT at early stage followed conventional architec-
ture of Transformers used for NLP, letting the final state
of an additional class token [19] be the feature represen-
tation. However, using the class token as a feature rep-
resentation can ignore per-token information. Thus, there
has been active studies on pooling strategies in NLP, aggre-
gating per-token information as an alternative of the class
token [25, 43, 59]. For ViT, recent works exploit the av-
erage pooling for achieving better performances than the
class token [12, 52, 53], or preserving such per-token in-
formation [2, 3, 27, 77]. Alternatively, we can explore the
representative pooling strategies studied in CNNs, which
are reported to be effective: i.e., max [58, 65] and Gener-
alized Mean (GeM) [55] poolings. However, they have not
been built with consideration of ViT architecture and do not
consider channel-wise differences in the activation maps,
aggregating crucial and trivial channels with the same im-
portance.

In this paper, we present Group Generalized Mean
(GGeM) pooling as a simple yet powerful pooling strat-
egy for ViT. GGeM divides channels into multiple groups
in the final activation maps and computes GeM pooling
with a shared pooling parameter per group (illustrated in
Fig. 1). As shown in Fig. 2, each channel in the final
activation maps activates a different spatial area. GGeM
considers such channel-wise differences by exploiting dif-
ferent trainable parameters for each group. Moreover, we
have analyzed how pooling strategies work for ViT and
discover the followings: 1) the pooling parameters decide
the degree of concentration of gradient, 2) the grouping in
GGeM leads to a lower inter-head similarity, and 3) the
higher pooling parameter increases the number of heads fo-
cusing on global information. Compared to the existing
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pooling strategies, GGeM shows a 0.1%p to 0.7%p per-
formance boost and achieves a new state-of-the-art perfor-
mance for ViT-Base and ViT-Large on ImageNet-1K clas-
sification tasks. Additionally, experiments on image re-
trieval and multi-modal representation learning demonstrate
the versatility of GGeM for various vision tasks.

2. Related Work
Vision Transformer and Self-supervised Learning. In-
spired by its great success in NLP tasks, ViT [21] has been
introduced by following the conventional architecture of
NLP Transformer, using a class token for final feature rep-
resentation. Recently, a number of studies [8, 29, 47, 66, 71]
have explored to improve ViT in terms of recognition
performance and training efficiency. DeiT [66] exploits
the distillation scheme for better training efficiency, using
both class and distillation tokens for feature representation.
Moreover, ViT has been actively used for Self-Supervised
Learning (SSL) task [2, 3, 7, 27, 72, 77, 78]. Recent ViT
based SSL approaches, such as MAE [27], SimMIM [77],
BeiT [3] and Data2Vec [2], feed direct loss to patch tokens
for each objective (i.e., pixel-wise reconstruction or masked
image modeling). As the patch token contains rich spatial
information, those SSL methods use the average pooling of
all patch tokens to aggregate the per-token information. Our
goal is to propose a generic pooling method for both scratch
training and fine-tuning.

Pooling Strategies have been widely studied to design
CNN-based global descriptors in image retrieval tasks [1,
33, 45, 58, 65, 73]. Popular pooling strategies in CNNs in-
clude the average pooling (a.k.a. SPoC) [1] and max pool-
ing (a.k.a. MAC) [58, 65], which average and select maxi-
mum activations on the feature map, respectively. GeM [55]
has been introduced to generalize max and average pool-
ing by a pooling parameter. As variants of such standard
pooling strategies, weighted sum pooling [34], regional
MAC [65], multiscale RMAC [45], and weighed GeM [73]
have been introduced. There also has been an attempt to
use the attention mechanism for pooling by replacing the
average pooling in CNNs with a single layer of multi-head
attention block [56]. However, there are limited studies on
pooling strategies w.r.t. activation maps (patch tokens) in
ViT. Thus, this work covers exploring how standard pool-
ing strategies work in ViT.

Group-wise Computation. The concept of groups has
been widely studied for CNN. Group convolution has been
proposed in AlexNet [41] to distribute the model over two
GPUs. ResNeXt [76] presents a module that splits chan-
nel dimensions into groups as group convolution for bet-
ter performance under similar computational costs. Mo-

Figure 1. Comparison between GeM and GGeM pooling.
Given N × N × D activation maps, GeM aggregates them with
a single pooling parameter p, while GGeM performs group-wise
aggregation with different pooling parameter pi for each group. In
this case, the number of group G is 4.

bileNet [30] and Xception [11] adopt depth-wise separable
convolutions, which are group convolutions with the same
group number as the channel number. Group Normaliza-
tion [74] divides the channels into groups and computes
the mean and variance within each group for normaliza-
tion. Likewise, the concept of the grouping can be found in
Transformer. In a Transformer block, the channels of inter-
mediate representations are divided by the number of heads
(i.e., channel-wise grouping) and computes attention within
each head. GGeM shares the same spirit of dividing chan-
nels into groups, but it performs GeM pooling within each
group for effective aggregation of per-token information.

3. Method
In this section, we propose GGeM, a pooling method for

considering channel-wise differences of the activation maps
by grouping channels. We first formulate ViT architecture
(Sec. 3.1) and revisit representative pooling strategies stud-
ied in CNNs (Sec. 3.2). Next, we present the motivation
and details of GGeM (Sec. 3.3), and analyze how pooling
strategies work and affect ViT (Sec. 3.4).

3.1. Vision Transformer

This paper considers Vision Transformer models, such
as ViT-Small, ViT-Base, or ViT-Large, for pooling strate-
gies. Given an image I ∈ RH×W×C , the image ten-
sor is reshaped into a sequence of flattened 2D patches
I ′ ∈ RN2×(R2C), where (H,W ) is the resolution of the
input image, C is the number of channels, (R,R) is the
resolution of each image patch, and (N,N) is the num-
ber of patches for height and width1. Then, the sequence
of patches maps to D dimensional feature by a trainable
linear projection, and a learnable embedding is attached to
the sequence of embedded patches as BERT’s [class] token.
Then, the embeddings are fed into the multiple Transformer

1The original ViT [21] uses I′ ∈ R(NM)×(R2C), where (NM) =
HW/R2 to allow non-square images. In this paper, we assume square
images for simplicity.
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Figure 2. Visualization of the activation map X p
d . We use

ImageNet-1K trained models using GeM pooling with fixed p.
Each row indicates pooling parameter p, where p = 1 equals to av-
erage pooling. Each column indicates the index of random channel
dimension d.

blocks, and the last Transformer block outputs R(N2+1)×D,
where 1 is for the class token. Usually, the 1 × D class
token is used for the final feature representation [21, 66].
However, selecting the class token as the final representa-
tion loses the per-token information of the remaining N2

token embeddings. Hence, we are interested in how to ag-
gregate the per-token information of the RN×N×D patch
tokens.

3.2. Pooling Strategies

Average Pooling. We denote X ∈ RN×N×D as a 3D ten-
sor of activation maps and Xd as the set of N × N acti-
vations of a feature map d ∈ {1 · · ·D}. Given the activa-
tion maps X , we aggregate the spatial information into a
feature representation v ∈ RD, an output of a pooling pro-
cess. The average pooling [1] has been a standard pooling
strategy for CNNs and also has been actively exploited in
ViT [2, 3, 27, 77]. Let | Xd | be the number of elements in
the set Xd, then the feature representation in the case of the
conventional average pooling is as follows:

v(a) = [v
(a)
1 , · · · , v(a)d , · · · , v(a)D ]T , v

(a)
d =

1

| Xd |
∑

x∈Xd

x.

(1)

Max Pooling. Instead of taking the average of the fea-
ture map, the max pooling chooses the highest activation
in the feature map to capture the most distinctive represen-
tation. The feature representation obtained by the conven-
tional global max pooling [58, 65], is defined by:

v(m) = [v
(m)
1 , · · · , v(m)

d , · · · , v(m)
D ]T , v

(m)
d = max

x∈Xd

x.

(2)

Figure 3. The heatmap of partial derivatives ∂v
(g)
d /∂xi. The

feature before a pooling xi and pooling parameter p are uniformly
generated from 0 to 1 and 1 to 8, respectively.

Generalized Mean Pooling. By exploiting the general-
ized mean [20], the Generalized Mean Pooling (GeM) [55]
has been introduced as:

v(g) = [v
(g)
1 , · · · , v(g)d , · · · , v(g)D ]T ,

v
(g)
d =

(
1

| Xd |
∑

x∈Xd

xpd

) 1
pd

,
(3)

where pooling parameter pd is either trainable or fixed. In
practice, a shared pooling parameter p is used for all chan-
nels as pd = p, ∀d ∈ {1, · · · , D}. This is because using dif-
ferent pooling parameters per channel is reported to be dis-
tractive for training [55]. Thus, the term “GeM” in this pa-
per without extra explanation denotes the typical GeM that
uses a shared pooling parameter p for all channels. The av-
erage pooling and the max pooling are special cases of GeM
pooling: GeM becomes average pooling when pd = 1;
GeM becomes max pooling when pd →∞.

3.3. Group Generalized Mean Pooling

The role of pooling parameter p in GeM is to amplify
the discrepancy of activations within the feature map. We
visualize randomly selected feature maps X p

d of ImageNet-
1K [18] trained models using GeM pooling with fixed pool-
ing parameter p. As shown in Fig. 2, each channel dimen-
sion contains different spatial information. Moreover, the
feature map of the average pooling (p = 1) shows activa-
tions in diverse regions, while it is shown that the larger p
becomes, the more locally activation map responses. With
these observations, our motivation is to stress important
channels while suppressing trivial channels using different
pooling parameters pd for channels.

We propose Group Generalized Mean pooling (GGeM).
GGeM divides the channels into groups and computes GeM
with the pooling parameter pi per group. Here, we assume
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Figure 4. Mean of CKA similarities between heads of MHA.
Each dot denotes mean of CKA similarities between the query
head and other heads. The blue line denotes average of all CKA
similarities between heads.

that each group of channels is ordered sequentially along
the D axis. The number of groups G is a pre-defined hyper-
parameter, where we suggest using the number of heads in
ViT (i.e., 6 for ViT-S, 12 for ViT-B, and 16 for ViT-L) as G.
Let P = {p1, · · · , pG} be a set of trainable parameters pi,
the feature vector (v(gg)) obtained by GGeM is defined by:

v(gg) = [v
(gg)
1 , · · · , v(gg)d , · · · , v(gg)D ]T ,

v
(gg)
d =

(
1

| Xd |
∑

x∈Xd

xpy(d)

) 1
py(d)

, y(i) =

⌈
i

D/G

⌉
,

(4)

where d·e is the ceiling operation and D/G is the number
of channels per group. GGeM with G = 1 is equivalent
to GeM with a shared pooling parameter p for all channels.
On the other hand, GGeM with G = D contains D pooling
parameters {p1, · · · , pD}, one for each channel. The com-
parison between GeM and GGeM is illustrated in Fig. 1.

3.4. Analysis

Gradient Flow. In order to find out the relationship be-
tween the feature before a pooling xi (i ∈ {1, · · · , N2})
and the feature after a pooling v

(g)
d during the back-

propagation, we analyze the partial derivative of the pooled
feature v

(g)
d with respect to the input of pooling layer x of

Eq. 3. Such partial derivative ∂v(g)d /∂xi is computed as fol-
lows [55]:

∂v
(g)
d

∂xi
=

1

| Xd |
v
(g)
d

1−pd

xpd−1
i . (5)

According to Eq. 5, because all inputs share the same | Xd |
and the same v(g)d , a larger input xi achieves a larger deriva-
tive ∂v(g)d /∂xi compared to that of a smaller input. Besides,

Figure 5. Attention head mean distances with different GeM
pooling parameters. Higher mean distance indicates more glob-
ally attending heads. p = 1 and p → ∞ are average and max
pooling, respectively.

such relative difference of the derivatives caused by input
difference will become much larger with a larger pd. The
growth of the relative difference is proportional to pd − 1
power of the input difference because of the existence of the
term xpd−1

i in Eq. 5. Such phenomenon implies that: for
a smaller pd, gradients would be evenly assigned to each
input; for a larger pd, more gradient is assigned to the in-
put with a larger value. In other words, the pooling pa-
rameter pd decides the degree of concentration of gradient.
The same conclusion also can be found in Fig. 3, where the
heatmap of derivatives is provided with the input xi uni-
formly generated from 0 to 1, and p uniformly generated
from 1 to 8.

Impact of Grouping. For the well-trained Multi-Head
Attention (MHA) layer of a transformer, the inter-head sim-
ilarity will be small so that different heads cover different
subspaces [7, 17, 48, 67]. However, MHA does not always
guarantee independently acting heads focusing on different
subspaces [17]. As all heads share the same p, average,
max and GeM pooling can not guide each channel to have
different characteristics, which is not beneficial for leading
heads to make different subspaces. However, GGeM, which
uses different pi per head, is beneficial for inducing heads to
learn characteristics of different subspaces because different
heads can achieve gradients with different degrees of con-
centration. In order to show such characteristics of GGeM,
we have analyzed the similarity of heads by taking the aver-
age over 2,000 input images on ImageNet-1K trained ViT-
B/16. We use Centered Kernel Alignment (CKA) similar-
ity [37] for the analysis, which is used to measure the sim-
ilarity of different layers [57]. As shown in Fig. 4, GGeM,
which uses different pd for different heads, shows smaller
inter-head similarity compared to other pooling methods.
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Figure 6. Impact of initial p. We differentiate initial p for GeM
with fixed p, GeM with trainable p and GGeM with trainable p.

This implies that GGeM is beneficial for inducing the heads
to learn different representation subspaces. Similar patterns
stand out in the later Transformer blocks (i.e., Transformer
blocks 10 to 12). See the Appendix for the different blocks.

The weights of each head of MHA are tightly coupled
as they are trained in a bundle. However, for GGeM that
uses independent pd for all dimensions (i.e., G = D), the
different degrees of gradient concentration for the different
dimensions of the head can disturb the “training in a bun-
dle” process. On the contrary, optimal GGeM with the num-
ber of groups equal to the number of heads uses one pi per
head, which will keep the weights of each head to be trained
in a bundle. In conclusion, GGeM is more beneficial for
performance improvement compared to other types of GeM
methods in ViT.

Attention Head Mean Distance. In order to understand
how pooling strategies affect ViT models, we analyze self-
attention layers following [21,57]. Each self-attention layer
consists of multiple self-attention heads as channel-wise
grouping, and each head aggregates information from other
spatial locations by attention mechanism. Here, we com-
pute the head mean distance between a query patch position
and the other positions it attends to. In detail, we weight
the pixel distances with the attention weights for each at-
tention head. Then we average it per head over 2,000 input
images by using ImageNet-1K trained ViT-B/16. Interest-
ingly, we see a clear pattern in the head mean distances as
shown in Fig. 5. By increasing the pooling parameter p
from average (p = 1) to max (p → ∞) pooling, the aver-
age of all head mean distance increases, which indicates the
number of heads attending on global information increases.
While average pooling more attends on local information
compared to other pooling methods, the increase of p di-
versifies the role of the heads attending on both local and
global information. Similar patterns can be observed in the
later Transformer blocks (i.e., Transformer block 10 to 12).
See the Appendix for the different blocks.

Figure 7. Impact of number of groups. G = 1 is the GeM
pooling, while G = 12 corresponds to the number of heads in
ViT-B/16.

4. Experiments
In this section, we validate the proposed GGeM on dif-

ferent vision tasks. We conduct ablation studies on the main
properties and robustness of GGeM, and show image classi-
fication performance on scratch training, fine-tuning, linear
probing and partial fine-tuning (Sec. 4.1). Next, we perform
experiments on image retrieval (Sec. 4.2) and multi-modal
representation learning (Sec. 4.3).

4.1. Image Classification

We perform an ablation study of GGeM and evaluate the
image classification performance of different strategies on
the ImageNet-1K [18] dataset. For training from scratch,
we set the training epoch to 300 epochs. For fine-tuning
a self-supervised model, the training epoch is set to 100
epochs and 50 epochs for ViT-B/16 and ViT-L/16, respec-
tively. As a baseline model for the ablation study, we use
MAE [27] pre-trained ViT-B/16 model unless otherwise
noted in the experiment. We report top-1 validation accu-
racy of a 224 × 224 cropped image. Experimental details
are in the Appendix.

4.1.1 Main Properties

Impact of Initial p. We differentiate initial p for GeM
with fixed p, GeM with trainable p, and GGeM with train-
able p. As shown in Fig. 6, the performances are affected by
the initial p. GGeM pooling consistently outperforms GeM
with fixed p and GeM with trainable p, except for the case of
p = 7. GeM with fixed p and trainable p seems to have sim-
ilar performance patterns. In all three cases, performances
are increased by increasing the initial p and dropped after
the optimal p. The optimal value of the initial p can vary
by the models and the tasks, but the range of 3 to 5 shows
stable performance for GGeM.

Impact of Number of Groups. Fig. 7 shows the influ-
ence of the number of groups G by different initial power

5



(a) GeM pooling (b) GGeM pooling

Figure 8. Trained pooling parameters based on initial p. We visualize trained pooling parameters by different initial p on GeM and
GGeM pooling. GeM pooling has a single shared parameter, while GGeM pooling has 12 pooling parameters for ViT-B/16.

p. G = 1 is the GeM pooling with a single pooling param-
eter for all channel dimensions, while G = 768 indicates
using different pooling parameters for each channel dimen-
sion. The performances for initial p = 3 and p = 5 increase
until the G equals to the number of heads (G = 12 for ViT-
B/16), then it drops until G = 768. In other words, the
optimal G is the number of heads in ViT. The results are
linked to the analysis in Sec. 3.4. Because of the MHA ar-
chitecture, using multiple p within a head can be harmful
by the different degrees of gradient concentration for the
different dimensions of the head, while using a single p for
all channel dimensions cannot be beneficial for achieving a
small inter-head similarity.

Trained Pooling Parameters As the pooling parameter
pi is trainable, the trained value will be different from
the initial value. We visualize how the pooling parameter
changes with different initial values for GeM and GGeM
pooling. As shown in Fig. 8, the trained pooling parameter
gets higher with the increase of the initial value, and ev-
ery trained pooling parameter converges between 4 and 6.5.
When the initial value is 1, it increases until around 5, while
the initial value of 7 decreases until around 6 to 6.5. This
indicates that there is a certain convergence range (i.e., 4 to
6.5). The 12 pooling parameters of GGeM are distributed
within a range of 1.

4.1.2 Scratch Training and Fine-tuning

In Tab. 1, we compare the pooling strategies based on
the scratch training and fine-tuning on pre-trained models
by Self-Supervised Learning (SSL), including MAE [27],
BeiT [3], SimMIM [77] and Data2Vec [2]. Based on the
trained model with label supervision, we report top-1 vali-
dation accuracy and k-NN performance (k=12). k-NN per-
formance is for an auxiliary metric to see the performance
of feature representation itself without a linear classification

layer. For scratch training, we follow the training recipe
of [27] with small modifications for stable training and bet-
ter performance than [21, 66]. As general scratch training
techniques use the class token for a feature representation,
our class token baseline shows a decent performance com-
pared to DeiT. While average and GeM pooling outperform
the class token, max pooling shows mixed results on ViT-
S/16 and ViT-B/16. Overall, GGeM shows the best per-
formance among all, having performance boosts between
0.3%p and 0.7%p.

For fine-tuning experiments, we fine-tune ImageNet-1K
with SSL pre-trained models, which use the average pooling
for baseline. We follow the same fine-tuning recipe for each
work and report our reproduced score (“Average pooling”)
and reported score (“Reported”). Based on the reproduced
experiment, we differentiate pooling strategies. Max pool-
ing shows similar performances to the baseline, while GeM
pooling shows better performances. In comparison with Av-
erage pooling, GGeM shows the minimum of 0.2%p and the
maximum of 0.4%p performance improvement on ViT-S/16
and ViT-B/16. The results show that GGeM is a superior
pooling strategy in both scratch training and fine-tuning in
image classification task.

4.1.3 Linear Probing and Partial Fine-tuning

We conduct linear probing and partial fine-tuning experi-
ments based on MAE pre-trained ViT-B/16 model. For lin-
ear probing, we train a linear classifier on frozen blocks.
For partial fine-tuning, we fine-tune the last several lay-
ers based on other frozen blocks by following [27]. For
both GeM and GGeM, initial p is set to 3. Tab. 2 shows
the results. Notably, all pooling methods are less linearly
separable compared to the class token for linear probing.
However, pooling methods generally outperform for a few
blocks of training (i.e., 1 to 4), which indicates the pooling
methods perform well when non-linear layers are tuned. For
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Class Average Max GeM GGeM Reported
Method Acc. k-NN Acc. k-NN Acc. k-NN Acc. k-NN Acc. k-NN Acc.

ViT-S/16
Scratch 80.0 79.2 80.4 80.2 77.1 76.3 80.6 80.4 80.7 80.5 79.9‡

ViT-B/16
Scratch 82.4 81.8 82.4 82.2 82.6 82.4 82.6 82.6 82.7 82.7 81.8‡

MAE [27] - - 83.5 83.0 83.5 83.1 83.7 83.2 83.9 83.3 83.6
BeiT† [3] - - 83.6 83.4 83.5 83.1 83.7 83.5 83.8 83.6 83.7
SimMIM [77] - - 83.7 83.5 83.6 83.1 83.9 83.5 84.0 83.6 83.8
Data2Vec [2] - - 84.0 83.6 83.7 83.2 84.1 83.7 84.3 83.8 84.2

ViT-L/16
MAE [27] - - 85.8 85.7 85.7 85.6 85.8 85.8 86.0 85.9 85.9
BeiT† [3] - - 85.9 85.8 86.0 85.8 86.1 85.9 86.2 86.0 86.0
Data2Vec [2] - - 86.5 86.4 86.6 86.4 86.6 86.4 86.7 86.5 86.6

Table 1. Scratch training (Scratch) and fine-tuning with SSL models for ImageNet-1K classification. Every SSL model are pre-trained
with ImageNet-1K, except BeiT [3] with † used ImageNet-22K. We report top-1 accuracy (Acc.) and k-NN score based on trained model
with label supervision. “Reported” indicates reported score in the original paper. ‡ denotes scores from DeiT [66].

Pooling # blocks fine-tuned
0 1 2 4 6 8 10 12

Class 67.8 75.2 79.1 82.0 82.9 83.2 83.4 83.4
Average 66.6 77.5 80.4 82.2 82.9 83.3 83.4 83.5
Max 59.1 77.2 79.8 81.9 82.9 83.2 83.2 83.5
GeM 65.9 78.6 80.7 82.4 83.1 83.4 83.6 83.7
GGeM 65.9 79.0 80.8 82.5 83.2 83.5 83.7 83.9

Table 2. Linear probing and partial fine-tuning. We fine-tune
partial Transformer blocks with different poolings. Tuning 0 block
is linear probing and tuning 12 blocks is full fine-tuning.

the number of blocks 6 to 12, class token shows similar per-
formance with average and max pooling. GeM and GGeM
share similarly high performance, while GGeM shows the
best performances for all partial fine-tuning cases. The re-
sults demonstrate that GGeM can be used for competitive
representations for non-linear layer tuning.

4.1.4 Robustness

We conduct an experiment to verify how robust pooling
methods are to uncommon examples. We quantitatively
benchmark robustness in background change [75] with fine-
tuned models on MAE. Ideally, robust models can han-
dle background variations and locate discriminative fore-
ground parts. With such motivation, the background change
benchmark introduces ImageNet-9 (IN-9) dataset. IN-9 in-
cludes 9 coarse-grained classes and 7 variants, which are
generated by mixing images from different foregrounds and
backgrounds. Only-FG (O.F.), Mixed-Same (M.S.), Mixed-
Rand (M.R.), and Mixed-Next (M.N.) are 4 variants with
the original foreground and the modified background. No-
FG (N.F.), Only-BG-B (O.BB.), and Only-BG-T (O.BT.)

Pooling O.F. M.S. M.R. M.N. N.F. O.BB. O.BT. IN-9 Mean

Class 81.3 84.3 77.5 75.0 47.4 18.8 12.9 94.0 61.7
Average 81.5 84.1 77.3 75.2 47.5 19.2 13.3 93.8 61.5
Max 81.6 84.2 77.6 76.4 48.4 18.8 12.7 94.0 61.7
GeM 81.5 84.6 78.0 76.7 47.9 19.3 13.3 93.9 61.9
GGeM 82.0 85.1 78.2 76.8 48.6 19.7 13.5 94.3 62.0

Table 3. Robustness evaluation of pre-trained models against
background change.

are 3 variants with the masked foreground. As demonstrated
in Tab. 3, GGeM shows the best performance in all variants
with the highest mean performance. The results signify that
the training with GGeM pooling can result in a robust model
for uncommon examples.

4.2. Image Retrieval

Pooling strategies are actively studied in image re-
trieval tasks to find the best spatial information aggrega-
tor. We fine-tune MAE [27] pre-trained ViT-B/16 models
on CUB200 [68], Cars196 [38], and Stanford Online Prod-
ucts (SOP) [51] with Norm-softmax loss [69, 70]. For the
fair comparison, we use three different metrics: Recall@1,
mean Average Precision (mAP), and R-Precision (RP) as
recall-based metrics can lead to an unreliable conclusion
compared to precision-based metrics [13, 14, 50]. We use
initial p = 3 for both GeM and GGeM. As shown in Tab. 5,
Max, GeM and GGeM pooling show higher performances
compared to class token and average pooling, while GGeM
pooling achieves the best for every benchmark. The results
support the superiority of GGeM in aggregating per-token
information for better feature representation.
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(a) Zero-shot classification

Image-to-Text Text-to-Image
Flickr30k MSCOCO Flickr30k MSCOCO

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

Class 19.8 42.5 53.9 8.0 23.2 33.4 13.5 31.5 41.4 6.7 19.3 27.5
Average 20.4 42.8 54.3 9.6 25.2 35.6 14.7 31.9 41.3 7.2 19.8 28.1
Max 17.5 40.4 53.7 9.9 25.7 35.7 14.0 32.7 42.9 7.6 20.2 29.1
GeM 19.7 45.8 57.3 10.7 26.9 36.9 14.2 33.5 43.2 7.9 20.7 29.4
GGeM 20.4 45.3 56.7 11.5 27.7 37.9 14.4 33.7 44.0 8.4 21.3 30.3

(b) Zero-shot cross-modal retrieval

Table 4. Multi-modal representation learning with different pooling methods.

Pooling CUB200 Cars196 SOP
R@1 RP mAP R@1 RP mAP R@1 RP mAP

Class 71.9 42.4 31.7 92.1 46.8 37.9 82.7 60.5 57.6
Average 71.3 41.4 30.7 92.3 47.2 38.2 82.9 61.0 58.1
Max 74.6 43.6 33.1 93.2 49.1 40.6 83.0 61.2 58.3
GeM 75.0 44.1 34.1 93.8 50.6 42.5 83.7 62.0 59.2
GGeM 75.2 45.0 34.6 94.1 51.0 43.0 84.8 62.1 59.3

Table 5. Image retrieval with different pooling methods.

4.3. Multi-modal Representation Learning

Large-scale vision-language pre-training models, such
as CLIP [56] and ALIGN [31], has demonstrated suc-
cess over various downstream tasks. ViT-based CLIP
models use the class token as image representation in
the visual encoder and [EOS] (end of a sentence) to-
ken as text representation in the text encoder. Pool-
ing strategies can be unsuitable for the text encoder be-
cause text inputs have different lengths, and the remain-
ing tokens are filled with padding [PAD]. Thus, we dif-
ferentiate pooling strategies in the visual encoder (ViT-
B/32) and trained the multi-modal model with the Con-
ceptual Captions (CC3M) dataset [60]. We use follow-
ing benchmark datasets for evaluating zero-shot classifica-
tion: ImageNet [18], Cifar10 [40], Cifar100 [40], CLEVR
Counts (CLEVR-C) [32], Describable Textures Dataset
(DTD) [15], EuroSAT [28], FER2013 [26], Food101 [4],
GTSRB [63], MNIST [42], RESISC45 [10], Stanford-
Cars [39], STL10 [16]. For zero-shot cross-modal re-
trieval, we use Flickr30k [54] and MSCOCO [46] bench-
mark datasets. The initial p is set to 3 for both GeM

and GGeM. The results are given in Tab. 4. In the zero-
shot classification tasks, the best scores for each bench-
mark dataset vary by the choice of pooling strategies, but
GGeM shows the best performance on average among all.
Moreover, GGeM shows mixed performances in MSCOCO,
while showing the best performance in Flickr30k. The re-
sults signify the superiority of GGeM for training large-
scale vision-language pre-training tasks.

5. Conclusion

In this paper, we have introduced GGeM pooling, which
considers channel-wise differences in the activation maps.
GGeM aggregates per-token information of ViT by divid-
ing channels into groups and computing GeM pooling with
shared pooling parameter per group. Based on our analysis,
grouping channels as the number of heads in ViT can induce
heads to learn different characteristics from each other. We
have shown that GGeM outperforms existing pooling strate-
gies for scratch training and fine-tuning in image classifica-
tion while showing potential to be used for other tasks such
as image retrieval and multi-modal representation learning.
The limitation of our work includes GGeM can work dif-
ferently on ViT variants, which use a different number of
heads within a model (i.e., [47]). Moreover, GGeM is lim-
ited to consider channel-wise difference within the heads
because of the shared pooling parameter per group. Explor-
ing GGeM on other ViT variants and considering channel-
wise difference even within the heads will be interesting fu-
ture research directions.
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A. Analysis Details
A.1. Additional Results on Impact of Grouping

To analyze the impact of grouping in GGeM, we com-
pute the similarity of heads in ViT. We use Centered Kernel
Alignment (CKA) similarity [4] which is designed to com-
pare representations within and across networks quantita-
tively. CKA similarity takes representations of two layers,
X ∈ R(s×n1) and Y ∈ R(s×n2), where s and ni are number
of samples and neurons, respectively. Given G = XXT and
H = YYT as the Gram matrices for the two layers, CKA
similarity is defined by:

CKA(G,H) =
HSIC(G,H)√

HSIC(G,G)HSIC(H,H)
, (i)

where HSIC is the Hilbert-Schmidt independence crite-
rion [2]. In addition to the Fig. 4, we further visualize
the mean of CKA similarities between heads in Transformer
blocks 7 to 12. As shown in Fig. A, GGeM shows smaller
inter-head similarity compared to other pooling methods in
Transformer blocks 9 to 12. The closer the Transformer
block to the pooling layer, the larger such pattern stands out.
The results demonstrate that GGeM is helpful for inducing
the heads to learn different representation subspaces.

A.2. Additional Results on Attention Head Mean
Distance

We analyze how pooling strategies affect ViT models by
comparing attention head mean distances. In addition to

Algorithm 1 GGeM: PyTorch-like Pseudo-code

# x: output tensor of the last Transformer block (
batch size x tokens x dimension)

# p_params: pooling parameters, the number of
pooling parameters is the same with groups

# groups: number of groups
# eps: minimum value for clamping
def GGeM(x):

x = x[:, 1:, :] # Remove class token

b, t, d = x.shape
e = d // groups
x = x.reshape((b, t, e, groups))

x = x.clamp(min=eps).pow(p_params)
x = x.mean(dim=1)
x = x.pow(1./p_params)

x = x.reshape((b, d))
return x

Notes: clamp is a function to clamp all elements into the range [min,
max].

the Fig. 5, we further compute attention head mean dis-
tances of Transformer blocks 7 to 12. As shown in Fig. B,
the mean distances increase by the pooling parameter p in-
creases. Such a phenomenon gets more noticeable when the
Transformer block is higher and closer to the pooling layer.
The results show that the larger p increases the number of
heads attending on the global information.

B. Implementation Details
B.1. Pseudo Code

The proposed GGeM is a simple algorithm that only a
few lines of code are necessary for implementation. We in-
clude PyTorch-like pseudo-code of GGeM in Algorithm 1.
When groups= 1, the algorithm works as GeM pooling.
GGeM with groups= 1 and fixed p params= 1 will
work as Average pooling. We set groups as the number
of heads in each ViT architecture and have a shared pooling
parameter per group. The clamp function is for ensuring
every elements are larger than zero.

B.2. Experimental Setting

The default setting for ImageNet classification experi-
ments is in Tab. A. For scratch training, we follow the train-
ing setting of [3] with modification of the learning rate for
a better baseline. The exponential moving average is used
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(a) Transformer block 7 (b) Transformer block 8 (c) Transformer block 9

(d) Transformer block 10 (e) Transformer block 11 (f) Transformer block 12

Figure A. Mean of CKA similarities between heads of MHA. We visualize Transformer blocks 7 to 12 of ViT-B/16. Each dot denotes
mean of CKA similarities between the query head and other heads. The blue line denotes average of all CKA similarities between heads.

(a) Transformer block 7 (b) Transformer block 8 (c) Transformer block 9

(d) Transformer block 10 (e) Transformer block 11 (f) Transformer block 12

Figure B. Attention head mean distances with different GeM pooling parameters. We visualize Transformer blocks 7 to 12 of ViT-
B/16. Higher mean distance indicates more globally attending heads. p = 1 and p → ∞ are average and max pooling, respectively.
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Config Scratch MAE BeiT SimMIM Data2Vec Linear probing

Initial p 5 5 (B), 2 (L) 5 4 3 3
Optimizer AdamW AdamW AdamW AdamW AdamW LARS
Learning rate 8e-3 2e-3 4e-3 5e-3 4e-3 (B), 5e-3 (L) 0.64
Weight decay 0.3 0.05 0.05 0.05 0 (B), 0.05 (L) 0
Optimizer momentum β1, β2 = 0.9, 0.95 β1, β2 = 0.9, 0.999 β1, β2 = 0.9, 0.999 β1, β2 = 0.9, 0.999 β1, β2 = 0.9, 0.999 0.9
Layer decay 0.75 0.65 (B), 0.75 (L) 0.65 (B), 0.75 (L) 0.65 0.65 -
Batch size 4096 1024 1024 2048 1024 16384
LR schedule cosine decay cosine decay cosine decay cosine decay cosine decay cosine decay
Warmup epochs 20 5 (B), 10 (L) 20 (B), 5 (L) 20 10 (B), 5 (L) 10
Traning epochs 300 100 (B), 50 (L) 100 (B), 50 (L) 100 100 (B), 50 (L) 90
Augmentation RandAug (9, 0.5) RandAug (9, 0.5) RandAug (9, 0.5) RandAug (9, 0.5) RandAug (9, 0.5) RandomResizedCrop
Label smoothing 0.1 0.1 0.1 0.1 0.1 -
Mixup 0.8 0.8 0.8 0.8 0.8 -
Cutmix 1.0 1.0 1.0 1.0 1 -
Drop path 0.1 0.1 (B), 0.2 (L) 0.1 (B), 0.2 (L) 0.1 0.2 (B), 0.25 (L) -
Exp. moving average 0.9999 - - - - -

Table A. Hyper-parameter setting for ImageNet-1K classification.

Config Value

Initial p 3
Model ViT-B/16
Optimizer AdamW
Learning rate 2e-3
Weight decay 0.05
Optimizer momentum β1, β2 = 0.9, 0.999
Layer-wise LR decay 0.65
Batch size 128
Learning rate schedule cosine decay
Warmup epochs 5
Traning epochs 100 (Cars, CUB), 50 (SOP)
Augmentation RandAug (9, 0.5)
Drop path 0.1
Base learning rate 4e-3
Proxy LR scale 100

(a) Image retrieval setting

Config Value

Initial p 3
Model ViT-B/32
Optimizer AdamW
Learning rate 1e-3
Weight decay 0.2
Optimizer momentum β1, β2 = 0.9, 0.98
Batch size 4080
Learning rate schedule cosine decay
Warmup steps 3500
Traning epochs 25
Augmentation RandomResizedCrop

(b) Multi-modal representation learning setting

Table B. Hyper-parameter settings for image retrieval and multi-modal representation learning.

only in scratch training. For fine-tuning, we follow the same
training recipe of each corresponding work (MAE, BeiT,
SimMIM, and Data2Vec) based on each pre-trained model
and sweep over different initial p (1 to 5) to find the best
performance for GeM and GGeM. We conduct the linear
probing experiment by following [1], while we use the same
training setting of MAE for partial fine-tuning.

The hyper-parameter settings of image retrieval and
multi-modal representation learning are in Tab. B. We con-
duct the image retrieval experiment based on MAE fine-
tuning code. We use Norm-softmax loss [9,10] as a baseline
objective function while scaling the learning rate of proxy
(proxy LR scale) with 100 for better baseline performance.
For multi-modal representation learning, we use the same
model architecture of CLIP [7] and the experimental set-
ting of SLIP [5]. We use ViT-B/32 image encoder and the
Transformer-based text encoder [8] with 49,152 vocab size

of byte pair encoding (BPE) tokenizer. The max sequence
length was clipped by 76 by following CLIP. We implement
all models using the PyTorch framework [6] and use four 8
× A100-80GB servers for experiments.

C. Additional Experiments

C.1. Visualization

We visualize Class Activation Map (CAM) [12] to see
how models trained with different pooling methods make
specific decisions based on the input image. For the CAM
method, Score-CAM [11] is used, which is a variant of
CAM which removes dependence on gradients. We use
ViT-B/16 fine-tuned models based on MAE, and images are
randomly selected from the ImageNet validation set. The
results are shown in Fig. C.
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Figure C. Score-CAM visualization with different pooling methods.
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