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Abstract

Recent Vision-Language Pre-training (VLP)
models have demonstrated significant advance-
ments. Nevertheless, these models heavily rely
on image-text pairs that capture only coarse
and global information of an image, leading to
a limitation in their regional understanding abil-
ity. In this work, we introduce RegionVLM,
equipped with explicit regional modeling ca-
pabilities, allowing them to understand user-
indicated image regions. To achieve this, we
design a simple yet innovative architecture, re-
quiring no modifications to the model archi-
tecture or objective function. Additionally, we
leverage a dataset that contains a novel source
of information, namely Localized Narratives,
which has been overlooked in previous VLP
research. Our experiments demonstrate that our
single generalist model not only achieves an
interactive dialogue system but also exhibits su-
perior performance on various zero-shot region
understanding tasks, without compromising its
ability for global image understanding.

1 Introduction

Vision-Language Pre-training (VLP) models (Rad-
ford et al., 2021; Li et al., 2022a, 2023b; Alayrac
et al., 2022) have shown significant progress in
recent years. A notable advancement is the emer-
gence of zero-shot capabilities, which turn VLP
models into generalist models, particularly when
combined with large language models (LLMs).
These models are now capable of solving various
vision-language (VL) downstream tasks, includ-
ing visual question answering (VQA) and image
captioning, without the need for task-specific fine-
tuning. The general knowledge enabling such zero-
shot capabilities can be attained through training
with massive image-text pair datasets (Schuhmann
et al., 2021, 2022; Gadre et al., 2023).
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BLIP-2

Ours

A girl holding a kite

A person only leg visible

A pink kite on the grass

A girl holding a kite

Figure 1: Conceptual comparison between BLIP-2 and
our model. While BLIP-2 generates a single caption
based on the entire image, our model can generate mul-
tiple captions corresponding to regions explicitly indi-
cated by users.

However, VLP models still face a significant
challenge: their limited ability to comprehend the
fine-grained semantics of specific regions within an
image. This stems from the nature of their training
datasets. Existing image-text pairs, typically ob-
tained by web crawling, tend to focus on the salient
information of the image and fail to provide an ex-
plicit indication of the area of the image the text is
describing. As a result, existing VLP models tend
to focus on the implicit global information of the
image, lacking the ability to understand the image
region explicitly indicated by a user.

In this paper, we introduce RegionVLM,
equipped with the regional understanding capa-
bility with explicit, or interactive, indications from
users. We argue its significance for the following
reasons. First, the regional understanding ability
broadens the versatility of VLP models. This facil-
itates the execution of additional vision-language
tasks that require explicit indications of regions,
such as referring image segmentation (Yu et al.,
2016) and visual commonsense reasoning (Zellers
et al., 2019). Second, we can tackle inherent ambi-
guity (or multiplicity) in VL tasks (Gao et al., 2022;
Chun et al., 2022; Chun, 2024; Chun et al., 2021)
by employing regional understanding. An image
can inherently be described by numerous text de-
scriptions, e.g., describing the visual attribute of
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A brown dog who is jumping, running, catching frisbees 
and playing with the lady.

A lady in pink top and blue shorts holding frisbees in her 
hand is playing with a brown dog in a park. 

A man wearing black shirt and shorts standing beside a white 
car is watching the dog and the lady playing with frisbees.

Figure 2: Examples of trajectories and their corresponding captions provided by the Localized Narratives dataset.

the salient object, explaining the background, etc.
However, current VLP models are trained to asso-
ciate an image with a single given caption rather
than encompassing all possible explanations. By
empowering a model to focus on specific regions
with explicit indications, we can better manage this
ambiguity. Third, integrating regional understand-
ing enhances the interactivity between the model
and users. As demonstrated by commercial services
such as GPT-4V (OpenAI, 2023; Yang et al., 2023),
enabling users to specify regions of interest in an
image can lead to more precise and relevant inter-
actions.

There have been several attempts to make VLP
models endow region understanding ability. One
possible direction is to develop a specialized model
based on CLIP (Radford et al., 2021) for segmenta-
tion and detection by directly using fully supervised
labels for each task (Zhou et al., 2023b; Gu et al.,
2021; Yun et al., 2023; Li et al., 2023a). Several
recent studies aim to develop a generalist model
with the capability of region understanding by lever-
aging datasets containing image regions and their
corresponding captions (Zhang et al., 2023; Wang
et al., 2023b; Jin et al., 2023; Zhou et al., 2023a).
However, the datasets used for these methods ex-
hibit inherent drawbacks. For example, the visual
grounding dataset (Yu et al., 2016) contains region-
text pairs only for a limited set of object classes; the
captions of Visual Genome (Krishna et al., 2017)
are relatively short and only depict a limited re-
lationship between objects. To achieve generality
and scalability in VLP models, we need a dataset
containing diverse regions with various open-world
objects as well as expressive captions.

In the paper, we propose to exploit regional tex-
tual information from diverse narratives of images.
Specifically, we utilize the Localized Narratives
(LN) datasets (Pont-Tuset et al., 2020; Voigtlaender
et al., 2023), which provide narrative descriptions
by annotators and their mouse trajectory over the
described region. The LN dataset includes expres-

sive free-form captions depicting multiple open-
world objects in a single image (see Figure 2),
and thus, it can provide general and meaningful
regional information to the VLP model. As shown
in Figure 1, unlike BLIP-2 which can generate cap-
tions only for the entire image, our model can gen-
erate captions for multiple regions of the image
through explicit indications.

We introduce a simple technique allowing a
model to accept the regional information of LN.
More specifically, we directly convert the 2D coor-
dinates of the trajectory points to the sequence of
strings (e.g., “[”, “19”, “44”, “]”, “[”, “23”, “55”,
“]”, as shown in Figure 4) and simply use them
as the input of VLP models. Finally, our model
is trained to generate a caption corresponding to
image regions associated with each trajectory, re-
sulting in an ability to understand regional informa-
tion. Our approach does not require architectural
modifications or redefinition of the objective func-
tion, ensuring seamless alignment with the original
scheme that takes the entire image and text as input.

Our RegionVLM can incorporate various appeal-
ing aspects into the existing model while preserving
its original capabilities. Our experiments demon-
strate that our generalist model can achieve the
interactive dialogue system by understanding the
explicit region indication from a user. In addition,
we show that our model can perform various zero-
shot regional understanding tasks that were beyond
the capability of the conventional BLIP-2. Further-
more, our model achieves better performance than
the recent state-of-the-art methods.

2 Related Works

2.1 Vision-Language Pretraining

Vision-language pre-training (VLP) aims to learn
meaningful multi-modal representations, enabling
zero-shot ability and few-shot adaptation for var-
ious VL tasks. CLIP (Radford et al., 2021) and
its variants (Li et al., 2021b; Mu et al., 2022;



Geng et al., 2023) align the vision and language
representations obtained from independent vision
and language encoders. The unified architecture,
which learns multi-modal joint representation, is
also popularly adopted (Li et al., 2022a, 2021a;
Chen et al., 2020; Wang et al., 2023c; Kim et al.,
2021) and shows powerful performance on various
vision-language tasks. Recently, the attempts to
inject visual information into large language mod-
els (LLMs) have been proposed (Koh et al., 2023;
Tsimpoukelli et al., 2021; Li et al., 2023b; Alayrac
et al., 2022). They can fully exploit the generality
power of LLMs so that they have zero-shot, few-
shot adaptation, and in-context learning abilities.
All the models mentioned above are trained only
on image-text pairs, so they primarily concentrate
on global image information, with a limited under-
standing of the local regions of the image.

2.2 Region Modeling for VLP

To equip VLP models with region-specific infor-
mation, a dataset explicitly matching image re-
gions to their corresponding texts is essential. How-
ever, due to the lack of publicly available datasets
and the high costs of creating such datasets, re-
searchers often rely on various forms of super-
vision, though these methods have their limita-
tions. For example, datasets which provide object
bounding boxes or masks annotated with their class
names, such as MS-COCO (Lin et al., 2014; Chen
et al., 2015) and OpenImages (Kuznetsova et al.,
2020), have been widely utilized (Li et al., 2022b;
Wang et al., 2023b; Zang et al., 2023; Zhong et al.,
2022; Zhang et al., 2022). However, the text de-
scriptions in the datasets are short and simple ob-
ject class names, which have limited ability to cap-
ture the relationships between objects in an im-
age. Visual Genome (Krishna et al., 2017) pro-
vides dense captions of various objects and at-
tributes in an image. Still, its captions are rela-
tively short and simple, falling short in modeling
the complex inter-object relationships. The visual
grounding datasets, such as RefCOCO (Yu et al.,
2016) or visual common-sense reasoning (VCR)
dataset (Zellers et al., 2019), have also been uti-
lized (Lai et al., 2023; Yao et al., 2022; Zhang et al.,
2023). However, their region-text pairs still provide
limited contexts (e.g., 80 class categories for Re-
fCOCO, and person-centric categories for VCR).
We utilize the Localized Narratives dataset (Pont-
Tuset et al., 2020; Voigtlaender et al., 2023), a

comprehensive large-scale dataset that includes ex-
pressive captions corresponding to various regions
associated with open-world objects.

Image-level prompting is another line of re-
search for enabling regional understanding of VLP
models. Wang et al. (2023a) crop the target image
region and feed the cropped image into the model.
Shtedritski et al. (2023) propose drawing a red cir-
cle around the target object in the image, which
can direct the model’s attention to a specific region.
These methods can provide regional information to
VLP models. However, they involve manual manip-
ulation of the original image, potentially contam-
inating or eliminating the crucial context around
the target object. In contrast, our method does not
interrupt the image, preserving all contexts.

3 Proposed Method

In this section, we describe our training dataset
and the proposed model, which addresses the lim-
itations of previous methods introduced in Sec-
tion 2. We first revisit our base model, BLIP-2 (Li
et al., 2023b) in Section 3.1. We then introduce
our dataset and model in Sections 3.2 and 3.3, re-
spectively. Finally, we present how our method per-
forms various VL downstream tasks in Section 3.4.

3.1 Revisiting BLIP-2

In this paper, we use BLIP-2 (Li et al., 2023b)
as our base model due to its training efficiency
and versatility. BLIP-2 aims to bridge a frozen
pre-trained visual encoder and a frozen large lan-
guage model (LLM) through a Q-former module,
which effectively allows the LLM to comprehend
images while maintaining its overall versatility.
Given the input image, the frozen pre-trained vi-
sual encoder produces the image feature I . The
Q-former module introduces N learnable input
queries Z. These input queries are subsequently
updated by interacting with each other through self-
attention layers and interacting with the image fea-
tures I through cross-attention layers. After a linear
projection, output embedding Ẑ ∈ RN×d is ob-
tained: Ẑ = Linear(Q-Former(Z; I)), where
d is the dimension of the text embedding of the
LLM. Given Ẑ to the LLM, the Q-former is trained
so that the frozen LLM generates the caption of the
given image through language modeling loss. The
model is trained with image-text pair datasets such
as MS-COCO and LAION.
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Figure 3: Overall architecture of our proposed model. Our model converts a set of trajectory points from Localized
Narratives into word tokens. The word tokens and visual features are passed to the Q-Former, generating a soft
prompt. This allows the frozen LLM to generate captions corresponding to the indicated regions.

3.2 Dataset Construction

To achieve a generalist model that has zero-shot ca-
pabilities with region understanding ability, it is es-
sential to have a dataset containing diverse regions
indicating various open-world objects and expres-
sive captions. We explore a new dataset in terms of
VLP, the Localized Narratives dataset (Pont-Tuset
et al., 2020; Voigtlaender et al., 2023). This dataset
includes images accompanied by narrative descrip-
tions from annotators, along with their mouse tra-
jectories over the corresponding regions. For a sin-
gle image, an annotator describes the various situa-
tions and relationships among objects in the image
using several sentences (see Figure 2). Therefore,
we can split the given caption into multiple sen-
tences based on periods (.) and commas (,) and
associate each sentence with the corresponding
trajectory points. From now on, in this context,
we will refer to the trajectory points as scribbles.
The Localized Narratives dataset is large-scale,
contains expressive free-form captions depicting
open-world objects, and provides multiple scribble-
caption pairs for a single image. These properties
enable the model to learn general region-aware
multi-modal representation.

3.3 Grounding Image Regions to LLM

We propose a simple yet intuitive technique to
convey regional information obtained from Local-
ized Narratives to the frozen LLM. The overall
architecture of our model is presented in Figure 3.
Suppose an image with multiple scribbles {S}
and their associated captions {T}. We randomly
choose one of the scribble-caption pairs, namely

{Si, Ti}. From Si, we randomly sample K points,
which can be represented as a 2-dimensional list
P = [[x1, y1], [x2, y2], · · · , [xK , yK ]], where x
and y indicate relative positions of the image (i.e.,
0 ≤ x, y ≤ 1).

To inject the regional information into the model,
we convert P into text. However, directly using the
2-dimensional list can result in unnecessarily long
input tokens. We introduce two tricks to simplify
the text string. First, we removed unnecessary re-
dundant word tokens, including those for the outer-
most brackets and intermediate commas. Second,
we multiplied each coordinate by 100 and rounded
them to ensure they have integer values. This allows
us to omit the repeated “0.” string. For example,
when K = 2, P = [[0.324, 0.643], [0.369, 0.622]]
is converted to a string “[32 64] [37 62]”. We
then tokenize the string by using a tokenizer, result-
ing in a set of word tokens W ∈ RL×d, where L is
the length of word tokens in W .

In the Q-former module, the learnable input
queries Z are concatenated with the word to-
kens W . This enables the queries Z to engage in
cross-attention mechanisms with the visual feature
I , while being conditioned by W through self-
attention layers. As a result, the Q-former pro-
duces the output query embeddings Ẑ and the
output word embeddings Ŵ , where [Ẑ, Ŵ ] =
Linear(Q-Former([Z,W ]; I)) ∈ R(N+L)×d.
We expect that the output query embeddings Ẑ
contain the semantics corresponding to the regions
indicated by W , as the attention mechanism with
W enables Z to direct its focus toward the regions.

We provide an empirical analysis showing that



Prompt: [59 37] [43 38] [54 44] [54 41] [55 38]

Prompt: [19 44] [23 55] [19 49] [24 46] [25 55] Prompt: [89 35] [84 25] [88 55] [78 51] [86 45]

Prompt: [64 55] [68 61] [68 70] [62 62] [72 55]Prompt: [45 58] [38 50] [36 62] [56 67] [60 66]

Prompt: [22 36] [30 31] [29 37] [22 25] [18 30]

Figure 4: Examples of cross-attention maps between learnable queries Z and image features I by varying the W
for a single image. The examples demonstrate that the queries successfully attend to the regions indicated by W , as
denoted by yellow stars.

the text-form input W can effectively guide the Q-
former queries Z to focus on the regions indicated
by W . We investigate which image regions the
queries attend to by analyzing the attention scores
of a cross-attention layer between queries and im-
age features. We visualize the cross-attention maps
between Z and I by varying W for a single image
in Figure 4. It demonstrates that the queries appro-
priately attend to the regions that the text prompts
W actually indicate, which are noted by yellow
stars.

We now provide the output query embeddings
Ẑ obtained from the Q-former to the frozen LLM.
Note that we exclusively use Ẑ while excluding Ŵ
to maintain the original scheme of BLIP-2. We train
the Q-Former using the language modeling loss so
that the frozen LLM generates the text Ti corre-
sponding to the region associated with Si. How-
ever, focusing mainly on modeling the local region
may lead to a loss of global image understanding
ability. Therefore, half of the training mini-batch
samples are sampled from the Localized Narrative
dataset, while the remaining half is sourced from
global image-text pairs originating from the exist-
ing dataset (e.g., LAION), following the standard
training procedure of BLIP-2. Note that we set S
as an empty string for the global image-text pairs,
denoted by “ ”.

3.4 Downstream Vision-Language Tasks
Our generalist model can be utilized in a range of
VL downstream tasks that demand either global or
local image comprehension abilities, or both.

Visual Question Answering (VQA): It requires
the ability for global image understanding. Given

an image, the Q-former generates the output query
embeddings Ẑ using S=“ ”, ensuring that Ẑ con-
tains the global image information. We attach the
word tokens of a question text prompt (“Question:
{} Answer:”) following Ẑ as input to the LLM. We
follow BLIP-2 (Li et al., 2023b) for the answer
generation process.

Referring Image Segmentation (RIS): It aims
to segment the object based on the provided lan-
guage description. Zero-shot RIS can directly show-
case the model’s region modeling ability. To im-
plement zero-shot RIS, we first obtain several ob-
ject proposals {Mi} using the Segment Anything
Model (SAM) (Kirillov et al., 2023). Among these
proposal masks, our goal is to select a mask whose
caption, generated by our model, is mostly similar
to the given language description Y . We gener-
ate K random points inside each Mi and convert
these points into the text prompt Wi. The Wi is
then fed into our trained model along with the
image features I , resulting in the likelihood of
the generated text yi. We compare each yi with
Y and select the final output mask Mi∗ , where
i∗ = argmini dist(yi, Y ), and dist is a dis-
tance metric. Since we have no access to supervi-
sion for RIS, there is little chance that the gener-
ated captions closely resemble Y as provided by
the RIS datasets. Therefore, we define dist as the
language modeling loss. We can expect improved
performance by exploring more advanced distance
metrics, but this is beyond our current scope.

Visual Commonsense Reasoning (VCR):
Given a set of object masks in the image, VCR aims
to answer the questions related to those objects



Describe the scene

a group of people are riding on
the back of an elephant

Can you guess where is the country
this picture was taken?

thailand

Why?

people ride elephants in thailand

What is his role?

he is a person who rides elephants
in thailand

What is she wearing?

a white t-shirt

How about her?

she is wearing a blue t-shirt

Guess where was this image taken

in california

What is the color of her dress?

a light blue dress

Then, what about this woman?

she is wearing a white dress
What is she doing?

she is dancing with a man

Assume this is X

And assume this is Y

Between X and Y, who is dancing 
with her?

Y

Guess the reason why X is not 
dancing with her

he is not in the mood to dance
with her

Figure 5: Selected examples of interactive dialogue using our model. The regions indicated by a user are noted
as yellow stars. The examples illustrate a wide range of abilities for interacting with users, reasoning, guessing,
question answering, etc. Note that the series of dialogues in one column is obtained from a single process.

(Figure 7). Moreover, beyond merely answering
about the question, the model is required to provide
a justification of the generated answer. Therefore,
VCR demands advanced cognition and common-
sense reasoning abilities, as well as both global and
local image understanding abilities. Since VCR
requires the information for multiple objects, we
implement VCR as follows: for each given object
mask Mi, we generate K random points inside
it and obtain Ẑi through the Q-Former. We then
create a prompt to let the LLM understand which
object index is associated with each query embed-
ding, and we append the question to this prompt.
The resulting example input to the LLM is as fol-
lows: “[0]: Ẑ0 [1]: Ẑ1, What is [0] here to do? 1.
[1] is here to steal gold from [0]. 2. · · · 3. · · · 4.
· · · ”. Our model will respond with one of choices 1
through 4, which it considers the most appropriate.

4 Experiments

4.1 Experimental Setup

Our base model is pre-trained BLIP-2 (Li et al.,
2023b) equipped with FlanT5XL (Chung et al.,
2022). For a visual encoder, we use ViT-g/14 from
EVA-CLIP (Fang et al., 2023). We finetune the Q-
former and the linear layer of BLIP-2 for 10 epochs
with a learning rate of 5 × 10−6 and a batch size
of 64. We set K to 10 and N to 32. We follow
the configuration of BLIP-2 for other settings re-
garding optimization. For experiments, we use 8
NVIDIA Tesla V100 (32GB) GPUs. For the train-
ing dataset, we use a mixture of Localized Narra-
tives datasets built upon images (Pont-Tuset et al.,
2020) and videos (Voigtlaender et al., 2023). Addi-
tionally, we utilize the Visual Genome dataset (Kr-
ishna et al., 2017) that provides bounding boxes



Table 1: Comparison with recent state-of-the-art weakly supervised and zero-shot methods for referring image
segmentation on three benchmarks. Our results are obtained by a single experiment run.

RefCOCO RefCOCO+ GRef
Method val testA testB val testA testB val

Supervision: Weakly Supervised
TSEG (Strudel et al., 2022) 25.44 - - 22.01 - - 22.05
Liu et al. (2023a) 31.17 32.43 29.56 30.90 30.42 30.80 36.00
Kim et al. (2023) 34.76 34.58 35.01 28.48 28.60 27.98 28.87
Lee et al. (2023) 31.06 32.30 30.11 31.28 32.11 30.13 32.88

Supervision: Zero-Shot
Yu et al. (2023) 26.70 24.99 26.48 28.22 27.54 27.86 32.79
RegionVLM (Ours) 38.74 39.40 37.59 31.47 33.99 30.22 33.94

Girl in middle with 
blonde hair

Woman sitting 
in chair

Second person
from the right

Woman wearing 
polka dot dress

Old woman looks 
like she’s dancing

Yellow and blue truck 
second from the left

RefCOCO RefCOCO+

Figure 6: Selected examples of referring image segmentation on RefCOCO (left) and RefCOCO+ (right).

Table 2: Comparison with recent state-of-the-art meth-
ods for zero-shot visual commonsense reasoning. Our
results are obtained by a single experiment run.

Q→A QA→R Q→AR

Random 25.0 25.0 6.3
VL-T5 (Cho et al., 2021) 28.2 27.5 8.2
FewVLM (Jin et al., 2021) 27.0 26.1 7.4
GRILL (Jin et al., 2023) 40.6 39.3 16.2
UniFine (Sun et al., 2023) 58.3 51.3 -
RegionVLM (Ours) 52.4 54.6 29.3

along with their captions. To generate the set of
points P for this dataset, we sample random K
points inside the bounding box. For global image-
text pairs, we use 115M images from the LAION-
400M dataset (Schuhmann et al., 2021) filtered by
Li et al. (2022a).

4.2 Experimental Results

Interactive Dialogue System: Our model can en-
able an interactive dialogue system with the gen-
erality power from the frozen LLM, realized by
appending the previous chat history in front of the
new query. If the image is provided, we append the
Q-former queries computed from the image with
user region indication in front of the text prompts.
In Figure 5, we provide examples illustrating its

Table 3: Comparison with BLIP-2 (Li et al., 2023b) on
zero-shot visual question answering.

OK-VQA GQA VQAv2

BLIP-2 41.08 43.92 63.12
RegionVLM (Ours) 41.88 43.50 63.22

capacity to comprehend the region indicated by
the user (interactivity) and its ability for reason-
ing, guessing, and answering questions. It’s worth
noting that our method also retains the original
BLIP-2’s capability to process and understand the
entire image.

Zero-shot RIS: Table 1 compares our method
with recent state-of-the-art weakly supervised and
zero-shot RIS methods on three benchmarks: Re-
fCOCO (Yu et al., 2016), RefCOCO+ (Yu et al.,
2016), and G-Ref (Mao et al., 2016). We adopt
mean Intersection-over-Union (mIoU) as an eval-
uation metric. As shown in Table 1, our generalist
method achieves significantly better performance
than Yu et al. (2023), which is a current state-of-the-
art specialized zero-shot RIS method. Additionally,
our method demonstrates competitive performance
compared to recent weakly supervised RIS meth-
ods (Strudel et al., 2022; Liu et al., 2023a; Kim
et al., 2023; Lee et al., 2023), which have access



[0]

[1]

[2]

Q: Why is [0] kissing [1]?
1. [0] is about to break up with [2]
2. It is because [0] is saying goodbye
3. They haven’t seen each other in years
4. [0] is kissing it for good luck

Predicted: 4, Answer: 4

Q: How does [0] feel about [1]?
1. She is bored with him
2. She doesn’t like her at all
3. [0] is apprehensive about her coming
4. She is in love with him

Predicted: 2, Answer: 3

[1]
[0]

Figure 7: Selected examples of visual commonsense reasoning.

to image-text pairs for each target dataset. Figure 6
presents examples of RIS results obtained by our
model.

Zero-shot VCR: Table 2 compares our method
with recent state-of-the-art zero-shot visual com-
monsense reasoning on the VCR dataset (Zellers
et al., 2019). The benchmark comprises three evalu-
ation tasks: question answering (Q → A), rationale
prediction given a question and answer pair (QA
→ R), and answer and rationale prediction given a
question (Q → AR). We use accuracy as an eval-
uation metric. As shown in Table 2, our method
demonstrates comparative performance compared
to the recent zero-shot VCR methods. It outper-
forms GRILL (Jin et al., 2023) by 11.8%p on Q →
A, 15.3%p on QA → R, which suggests that our
model exhibits particularly strong reasoning ability.
UniFine (Sun et al., 2023) shows superior Q → A
performance compared to ours, whereas our model
outperforms UniFine in QA → R, also indicating
our stronger reasoning abilities. Our method fo-
cuses on generative modeling with a frozen LLM,
known for its strong reasoning ability. On the other
hand, UniFine (Sun et al., 2023) utilizes frozen
CLIP (Radford et al., 2021), Roberta (Liu et al.,
2019), and OFA (Wang et al., 2022), which may
exhibit weaker reasoning capabilities compared to
recent strong LLMs. Additionally, our fine-grained
modeling captures meaningful relationships be-
tween objects, thereby contributing to enhanced
reasoning capabilities. Figure 7 presents examples
of VCR results obtained by our model. Our model
generally possesses a commonsense reasoning abil-
ity but tends to struggle with reasoning about open-
world knowledge (e.g., the relationship between
Harry Potter and Dudley’s mom, as shown in the
right example).

Zero-shot VQA: We conduct a quantitative as-
sessment for zero-shot VQA on OK-VQA (Marino
et al., 2019), GQA (Hudson and Manning, 2019),
and VQAv2 (Goyal et al., 2017) benchmarks. Ta-
ble 3 demonstrates that our method achieves com-
parable performance with BLIP-2, suggesting that

Table 4: Comparison of BLIP-2 (Li et al., 2023b) com-
bined with various region modeling methods for zero-
shot referring image segmentation on the RefCOCO,
RefCOCO+, and G-Ref validation sets.

RefCOCO RefCOCO+ GRef

Shtedritski et al. (2023) 14.85 15.76 15.86
Wang et al. (2023a) 27.91 31.45 31.38
RegionVLM (Ours) 38.74 31.47 33.94

Table 5: Comparison with BLIP-2 (Li et al., 2023b) for
zero-shot image captioning on the NoCaps dataset.

BLEU@4 SPICE CIDEr

BLIP-2 43.4 14.0 105.8
RegionVLM (Ours) 47.7 15.5 119.1

our approach preserves the global image under-
standing ability.

Zero-shot Captioning: Table 5 presents the
zero-shot captioning performance on the No-
Caps (Agrawal et al., 2019) benchmark. Com-
pared to BLIP-2, our model achieved improved
performance across all three evaluation metrics:
BLEU@4, SPICE, and CIDEr. We believe that our
regional modeling contributes to the model’s abil-
ity to capture fine-grained information, resulting in
descriptive and detailed captions.

Comparison with other region modeling meth-
ods: We compare our method with two recent
techniques that can inject regional information
into BLIP-2 on RIS. We used the same evalua-
tion settings, including the mask proposals from
SAM (Kirillov et al., 2023) and the matching pro-
cess between the generated captions and give de-
scriptions. For Shtedritski et al. (2023), the image
with a red circle drawn on each proposal area was
inserted into BLIP-2 to generate a caption. For
Wang et al. (2023a), the cropped box correspond-
ing to each proposal is resized to the original image
size, and BLIP-2 generates the caption based it.
Table 4 demonstrates that our method achieves sig-
nificantly better performance compared to those



Table 6: Robustness of our model against the noisy input
scribbles.

Dilation 0 3 7 15

mIoU 37.73 37.64 36.39 35.77

two methods, and comparable performance with
Wang et al. (2023a) on RefCOCO+. The language
descriptions from RefCOCO+ tend to depict the
object itself with less focus on its surrounding con-
texts or location. However, RefCOCO depicts the
surrounding context of the object such as its loca-
tion, so global information should be considered
together (see Figure 6). Wang et al. (2023a) inject
only region-of-interest into the model by cropping
the proposal region, thereby losing the proposal’s
contexts and location. Our method can consider
both local and global information for the proposal,
yielding satisfactory results across all benchmarks
for RIS.

4.3 Discussion

Robustness against the noisy input scribbles:
Our interactive system expects user scribble in-
puts. However, in practice, scribbles obtained from
users can be fall outside the intended object. We
argue that our model is robust against noisy user
input because the scribbles in the Localized Nar-
ratives dataset are collected through the free-form
mouse movements of human annotators, which are
inherently noisy. We support this argument with
an additional quantitative analysis on RIS. As de-
scribed in Section 3.4, the object proposal masks
are obtained by SAM (Kirillov et al., 2023). In-
stead of utilizing the SAM-generated mask directly,
we introduce some noise to simulate a noisy scrib-
ble environment. More precisely, we enlarge each
SAM-generated mask by varying dilation ratios.
This simulation represents a scenario in which a
user provides a coarse mouse scribble that is not
perfectly aligned with the target object but could
contain the outside of the object. Table 6 demon-
strates the robustness of our model against the noisy
input scribbles.

Sensitivity to K: We analyze the sensitivity of
the RIS performance to the value of K. Table 7
presents the RIS performance, varying K at test
time, using the model trained with K = 10. This
demonstrates that our model operates successfully
even when the number of provided points differs
between training and testing.

Table 7: Comparison of referring image segmentation
performance by varying K.

RefCOCO RefCOCO+ GRef

K = 5 37.56 30.95 32.75
K = 10 38.74 31.47 33.94
K = 15 37.98 31.14 33.11

Table 8: Effectiveness of point representation design
using Localized Narratives (LN) on zero-shot VQA.

OK-VQA GQA VQAv2

LN w/o points 39.56 42.90 61.74
LN w/ points 41.88 43.50 63.22

Leveraging Localized Narratives without
Point Representation: We can study the effec-
tiveness of our proposed method by training the
model trained with LN without the point represen-
tation. However, without the point representation,
the model cannot perform tasks that require explicit
region indication. Therefore, we present zero-shot
performance on VQA for the model fine-tuned by
using LN + LAION without the point representa-
tion. Table 8 shows that the point representation
brings better VQA performance. We believe this
is because LN contains less diverse and descrip-
tive captions compared to the existing image-text
pair datasets. However, our proposed model can
preserve global understanding ability by separat-
ing the learning of global understanding and local
understanding through the point representation.

5 Conclusion

In this study, we have addressed the limited region
understanding ability of existing vision-language
pre-training models. We proposed a model that can
input the indication of the region, which isseam-
lessly integrated into the existing model. In addi-
tion, we utilized Localized Narratives to learn the
general knowledge of image regions. Our experi-
ments showcase the superior performance of our
generalist model across a diverse set of zero-shot
region understanding tasks, without compromising
its ability for global image comprehension tasks.
As a generalist model, we foresee significant po-
tential for further enhancement through instruction
tuning (Liu et al., 2023b; Dai et al., 2023), estab-
lishing a promising direction for future research.
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Laptop next to catPSN Grey Sweater

Figure 8: Examples of our failure cases on zero-shot
referring image segmentation.

A Appendix

Dataset Details. As mentioned in Section 4.1,
we use a combination of image Localized Nar-
ratives (Pont-Tuset et al., 2020), video Local-
ized Narratives (Voigtlaender et al., 2023), Visual
Genome (Krishna et al., 2017), and LAION-400M
filtered by Li et al. (2023b). We present statistics
of each dataset in Table 9.

Failure Case Analysis for RIS. As demonstrated
in Table 1 and Figure 6, our method successfully
performs zero-shot RIS, but may occasionally yield
unsatisfactory results. Figure 8 shows some failure
cases. Figure 8(left) shows that our model tends to
struggle to recognize the character in the image. We
believe that we can further utilize Optical Charac-
ter Recognition (OCR) (Baek et al., 2019b,a; Kim
et al., 2022) datasets, which provide characters in
an image together with their location. Figure 8(mid-
dle) shows that our method correctly identifies the
target object, but tends to focus on small partial
regions of the target object. This limitation is also
explored in recent weakly supervised segmentation
studies (Lee et al., 2021a,b). We conjecture that
the reason for this is that only small regions of
the target object can provide sufficient information
to generate captions that align with the given lan-
guage descriptions. Figure 8(right) shows that our
method produces lower accuracy of RIS although
our method identified the referred object success-
fully. The language descriptions from RIS datasets
tend to describe a person by using only a portion
of the individual, such as “grey sweater” in the
example. Therefore, our method successfully iden-
tifies the “grey sweater” only, but since the actual
ground truth includes all regions of a man wear-
ing the grey sweater, these cases impact the overall
performance.

Limitations. In contrast to global image-text pair
datasets, which can be automatically collected from
the web, our dataset may have limitations in terms
of scalability. To address this, we can generate
pseudo region captions using our trained model,

Table 9: Number of images and number of region-
caption pairs for each dataset.

# of images # of region-caption pairs

Image LN 306K 445K
Video LN 125K 149K
Visual Genome 77K 1.7M
LAION 115M 115M

as BLIP-2 utilizes the pseudo captions produced
by BLIP (Li et al., 2022a) captioning model. Ad-
ditionally, our current evaluations focus mainly
on zero-shot downstream tasks. It is also worth
to explore the possibility of our method for trans-
fer learning (Yoo et al., 2023), semi-supervised
learning (Lee et al., 2019, 2022a,b), few-shot
learning (Jin et al., 2023; Alayrac et al., 2022),
and weakly supervised learning (Lee et al., 2023,
2021c).

Potential Risks. Since our model is based on
frozen LLMs, it shares similar potential risks to
LLMs, such as generating offensive output, vulner-
ability to attacks, and leaking personal sensitive
data. To address this, we may need an additional
filtering module to prevent such output from being
conveyed to users.
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