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Abstract

This paper proposes a unified end-to-end speech-to-image
model, VoxStudio, the first attempt to generate an ex-
pressive image directly from a spoken description by align-
ing both linguistic and paralinguistic information. We elim-
inate the need for an additional speech-to-text module,
which often ignores the hidden details beyond text, e.g.,
tone or emotion. To further advance this direction, we in-
troduce a new emotional speech and image dataset, Vox-
Emoset, that pairs emotional speech synthesized with cor-
responding visual scenes, enabling training and evaluation
of both semantic and affective aspects of speech-to-image
generation. Comprehensive experiments on the Spoken-
COCO, Flickr8kAudio, and VoxEmoset benchmarks demon-
strate the feasibility of our method and highlight key chal-
lenges, including emotional consistency and linguistic am-
biguity, paving the way for future research. The project
page is http://mmai.ewha.ac.kr/voxstudio/

1. Introduction

Imagination (production of sensations or feelings to create
mental images) by listening to an explanation (speech) is
a natural cognitive process. Speech is a primary and intu-
itive modality for human communication, capable of con-
veying both explicit semantics and rich paralinguistic cues
such as emotion, tone, and speaker intent. Unlike written
language, which abstracts meaning into discrete symbols,
speech embodies expressive characteristics that often carry
critical information beyond lexical content. These expres-
sive signals offer a promising foundation for cross-modal
generation tasks, particularly in generating visual content
that aligns not only with the literal meaning of spoken de-
scriptions but also with their affective undertones.

Recent advances in text-to-image (T2I) generation, espe-
cially diffusion-based models such as Stable Diffusion [26,
30], have achieved impressive results in terms of image fi-
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Figure 1. Samples produced by VoxStudio from spoken de-
scriptions.
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Figure 2. (a) The cascaded system consisting of ASR ([28]) and
T2I ([30]), and (b) audio-to-text feature mapping-based meth-
ods [36, 38] limits in cost than (¢) VoxStudio (ours). The diffu-
sion model is excluded to compute GFLOPs, time computations,
Params.

delity and semantic alignment. However, these models are
intrinsically limited by their reliance on text inputs, which
cannot faithfully capture the nuances of emotional intent or
vocal expressiveness embedded in speech. To address this,
some prior works [43, 44] have introduced emotion-aware
image generation by incorporating explicit textual modifiers
or sentiment labels. Nevertheless, such methods are still
constrained by the semantic ceiling of text, and often fail
to account for subtle variations in delivery such as pitch,
rhythm, or prosody that are intrinsic to human speech.
Other efforts have explored audio-to-image genera-
tion [16, 18, 35, 36] by mapping audio features into a textual
embedding space or aligning them with pretrained T2I mod-
els. However, they typically disregard the affective content
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Figure 3. The overall framework of VoxStudio for expressive image synthesis from spoken description.

of the audio or reduce it to textual proxies. Moreover, many
rely on cascaded frameworks where speech is first tran-
scribed into text via automatic speech recognition (ASR),
which introduces latency, transcription errors, and the loss
of paralinguistic information. These shortcomings are es-
pecially pronounced in under-resourced or unwritten lan-
guages — there are over 7,100 languages worldwide [5], yet
widely-used ASR services such as Google’s Speech Recog-
nition API support a limited number (125) of languages' —,
where ASR models may not be available, further limiting
accessibility and inclusivity.

To overcome these challenges, we propose a novel
framework, VoxStudio, that directly generates expres-
sive images from speech in an end-to-end manner. Rather
than treating speech as an intermediary step toward text,
VoxStudio embraces it as a fully expressive and suffi-
cient modality for visual content creation. Our model learns
to extract and compress meaningful phonetic features, in-
cluding both semantic and emotional information, with a
tailored speech information bottleneck (SIB) module, and
conditions a latent diffusion model for image generation. In
addition, we introduce VoxEmoset, a large-scale benchmark
dataset that pairs emotional speech with corresponding im-
ages, allowing for rigorous evaluation of emotional fidelity
in generated outputs. By embracing speech as a standalone
modality, VoxStudio bridges a significant gap in multi-
modal generative research, laying the groundwork for affec-
tive Al systems capable of responding to human expression.

2. VoxStudio

Unlike conventional cascade approaches (Fig. 2 (a, b)), our
method is designed to directly integrate speech representa-
tions into the image generation process (Fig. 2 (¢)). Our
approach reduces computational overhead by directly en-
coding speech features into image space while preserving
emotional and semantic fidelity. As shown in Fig. 2, our
approach uses less GFLOPS and parameters than conven-
tional approaches, using the proposed SIB to assist in cap-
turing diverse semantic features in image synthesis. Fig. 3
shows the overall framework of VoxStudio, consisting of
speech encoder, SIB, and image generator.

We consider two pre-trained speech models, SONAR [4]
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and Whisper large-v3 [28], to deploy comprehensive speech
features considering both linguistic and paralinguistic infor-
mation. Itis known to be capable of capturing paralinguistic
information, such as emotion and speaker identity [7, 48].
Formally, given an input speech X, we obtain speech em-
bedding s € RP*¥, where N depends on the length of the
speech and models, and D is the channel dimension of the
final output layer.

Although speech embeddings contain rich representa-
tions, they are excessively long and lead to a lower in-
formation density in each speech token compared to text
(e.g., Whisper encodes a maximum of 1500 tokens for 30-
seconds long speech, while CLIP text encoder makes 77 to-
kens). This low density and redundancy make direct usage
challenging to condition the image generator. To solve this
problem, we consider a Transformer-based speech informa-
tion bottleneck (SIB) module. SIB compacts semantics in
speech embeddings, motivated by previous works [11, 37]
applied to image and audio encoders. As shown in Fig. 3,
SIB reduces the number of speech tokens with a strided
convolution layer after a Transformer block along the time
axis. Based on our findings, a pooling ratio of 8 provides
the optimal balance, allowing us to maximize the informa-
tion retention of speech features. As a result, the initial em-
bedding s is processed into a compressed speech condition
¢ = fy(s), where ¢ € RM*D' M = N/8 and D' is the
input channel of the cross-attention block in the image gen-
erator. By leveraging such compressed representations, our
method improves the efficiency of speech-to-image while
preserving both linguistic and emotional expressiveness.

The image generator €y(-) is based on latent diffusion
model [30] which has demonstrated remarkable fidelity
compared to GAN-based methods widely used in early
audio-to-image works [40, 41]. The speech condition c,
compressed through SIB, is fed into €4(+) to guide the syn-
thesis process. Specifically, the speech embeddings are in-
jected into the UNet through cross-attention layers to con-
dition the image synthesis. This conditioning allows the
model to incorporate the emotional, semantic content of
speech into the generation process. The image generator
and SIB are optimized with the diffusion loss [30]. Finally,
the denoised latent is decoded into the image through the
decoder [19]. We note that our framework has no specific
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Figure 4. Examples from VoxEmoset (expressive tone).

Benchmark #Images #Speech Emotion ClipScore NMOS
SpokenCOCO [14] 123k 615k 30.42 2.9616
Flickr8kAudio [9] 8k 40k 31.27 2.9689
VoxEmoset (ours) 82k 247k v 30.27 2.9683

Table 1. Comparison of existing datasets and VoxEmoset.

design choices for the image generator.

Since training image generator anew requires a vast
amount of resources, we initialize the image generator with
a pre-trained T2I model for efficient learning. Only the dif-
fusion loss Lgis is used for optimizing the parameters 6 of
the generator and v of the SIB, and we do not design a spe-
cialized loss function (e.g., contrastive learning in [38], AR
moedling in [18]) for speech-to-image learning. Our simple
training framework ensures versatile connections for vari-
ous image generators. More implementation details are in
Appendix B.1.

3. VoxEmoset Benchmark

One major challenge of VoxStudio is the lack of well-
designed large-scale image-speech paired datasets, which
contain delicate information beyond text, e.g., tone or emo-
tion. To demonstrate the benefit of directly learning from
speech, we build a new large-scale image-speech paired
benchmark VoxEmoset. Previous benchmarks [10, 14] of-
ten overlooked paralinguistic features in speech. Moreover,
prior datasets required significant costs for human record-
ings, limiting their scalability.

Our benchmark uses the partial of 118k image subset
in EmoSet [42], emotional image dataset annotated with
Mikels model [25]. In line with [6, 23, 33], we group
amusement and excitement into a unified category, ‘enjoy-
ment’, and exclude ‘awe’ and ‘contentment’ categories be-
cause they are hard to distinguish in voice. The final number
of images in VoxEmoset is shown in Tab. | and Tab. B1.

We then generate captions using the instruction prompt
in Appendix A, restricting emotional expressions and fo-
cusing on factual descriptions instead. We use LLaVA-
OneVision [20] to generate three different captions are pro-
duced for each image to prevent the model from simply
generating emotionally biased captions. These captions
are subsequently converted into speech using F5-TTS [3]

SD (zero-shot)

SD (finetuning) VoxStudio

Prompt(+Amusement): the petals of a blooming flower are bright yellow.

Figure 5. Qualitative comparison between SD using text prompts
and VoxStudio using speech prompts.

guided by emotion reference signals from speech emo-
tion recognition (SER) datasets including CREMA-D [1],
MEAD [39], and RAVDESS [21].

We validate emotional intensity using Emo-
tion2Vec [24], filtering and re-generating inadequate
samples. To objectively assess speech quality, we randomly
sample 10k speech clips from each dataset and measure
NMOS [29]. Tab. | shows that VoxEmoset is compatible
with existing datasets in terms of speech quality (NMOS)
and description quality (CLIPScore). However, only our
benchmark explicitly expresses emotion in speech, as
shown in Fig. 4. Further details are provided in Appendix.

4. Experiments

4.1. Experimental setup

Datasets. We use SpokenCOCO [14] and VoxEmoset to
train VoxStudio. Flickr8kAudio [9] is used to evalu-
ate zero-shot generalizability. Each image in SpokenCOCO
and Flickr8kAudio has five voice recordings from unskilled
annotators, resulting in inherently noisy audio (e.g., the
recording may contain background noise, reading speed or
volume can vary, and pronunciation may not be as clear as
that of skilled voice actors as in Appendix B.5). VoxEmoset
is automatically generated and less prone to recording noise.
We use the Karpathy split [17] for SpokenCOCO.
Evaluation metrics. Following previous works [32, 47],
we evaluate the generation quality using FID [13], while
content alignment between speech and generated images is
measured with CLIPScore [12] using text transcriptions of
speech. For SpokenCOCO and VoxEmoset, random sam-
ples of 10k condition prompts, either speech or text, are
used for evaluation. For Flickr8kAudio, we use 5k test
prompts for evaluation. We also report emotion classifica-
tion accuracy (Emo-A) [43] on generated images to exam-
ine whether the results reflect emotion from prompts. Note
that we measure accuracy only with scores for the 5 emotion
categories — ‘amusement’ and ‘excitement’ are classified as
the same class— in the trained classifier [43].



Method Training Data Input (Spoken)COCO VoxEmoset
FID| CLIPScoret FID] CLIPScoret Emo-AtT

SD1.5[30] - T 23.37 31.14 20.21 31.70 60.81
Whisper [28] (ASR) (+SD1.5) - T 22.95 31.08 20.23 31.57 60.41
SD1.5 (Finetuning) SpokenCOCO, VoxEmoset T 22.45 31.77 18.31 31.72 69.38
SpeechCLIP+ [38] (+SD1.5) SpokenCOCO, Flickr8kAudio S 28.29 25.03 33.75 21.84 37.42
TMT [18] (+SD2.1) SpokenCOCO, Flickr8kAudio f S 25.48 28.26 29.48 26.08 48.54
VoxStudio SpokenCOCO N 24.95 29.04 32.60 26.16 46.20
VoxStudio SpokenCOCO, VoxEmoset S 27.15 27.27 19.94 29.04 71.70

Table 2. Performance comparison with baselines [18, 30, 38]. ‘Input’ denotes the data type of input condition for generative models: ‘T’
is text and ‘S’ is speech. 7: TMT [18] used an additional 15M synthesized speech for training.

Method Training FID|  CLIPScoref
SpeechCLIP+ [38] v 63.19 23.71
TMT [18] v 57.34 26.98
VoxStudio 55.80 29.60

Table 3. Performance comparison on Flikr8kAudio [9]

4.2. Results
Results on SpokenCOCO and VoxEmoset. Tab. 2 shows
the comparison of VoxStudio and baselines on Spoken-
COCO and VoxEmoset. SD1.5 with the text inputs (i.e.,
without speech) is shown as a baseline. Especially, Fig. 5
highlights the stark contrast between text- and speech-based
generation. While speech conveys emotions even with
the same wording, the text-based model inherently ignores
these cues and focuses on fact-based generation. Even
when trained on VoxEmoset, ‘SD (finetuning)’ struggles
to express emotions as semantic content, but speech leads
to a more rich and intense emotional expression. More-
over, as shown in the last example in Fig. 5, the CLIP en-
coder [27] often overlooks information from the latter part
of a sentence [460] (e.g., ‘bright yellow’ in the last example).
However, VoxStudio excels in conveying emotions when
trained on the same datasets. This advocates that speech, as
aricher modality for emotional expression, provides a more
effective signal to generate emotionally compelling images.
Remarkably, VoxStudio outperforms SpeechCLIP+
and TMT on SpokenCOCO, where VoxStudio does not
use Flickr8kAudio for training. While TMT additionally
used huge synthesized speech data from CC3M [34] and
CCI2M [2] for training, VoxStudio also show compa-
rable results on VoxEmoset. This result demonstrates that
our diffusion model is a powerful learner for speech-to-
expressive image alignment than contrastive learning [38]
and auto-regressive training [18]. The qualitative com-
parison on SpokenCOCO also shows that SpeechCLIP+
and TMT often ignore keywords in the prompts, while
VoxStudio can capture the details, as shown in Fig. B2a.
Results on Flickr8kAudio. Tab. 3 shows the per-
formance comparison on Flickr8kAudio. Here, while
TMT and SpeechCLIP+ used Flickr8kAudio for train-
ing, VoxStudio was evaluated in a zero-shot man-
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Figure 6. Human evaluation of emotion consistency.

ner. Surprisingly, VoxStudio outperforms existing meth-
ods by large margins. It illustrates that end-to-end
training in VoxStudio is more robust in aligning the
speech-language space. By contrast, speech features in
VoxStudio are more robust to the order or length of the
prompt. Moreover, VoxEmoset might improve the robust-
ness on generality as shown in Fig. B2b.

Human evaluation. We also conducted a user study.
26 participants evaluated 25 images to rate how well
the emotion conveyed in the image matched the given
speech. Specifically, VoxStudio is compared with a text-
prompted SD1.5 model finetuned on the same datasets, ask-
ing which generated images better aligned with the emotion
in speech. Fig. 6 shows the results from VoxStudio are
more aligned with the emotion than SD in all categories,
highlighting the effectiveness of speech prompts for expres-
sive image synthesis.

Analysis. To analyze VoxStudio’s robustness of design
choices and VoxEmoset’s impact, results of same descrip-
tion with different emotions, fine-tuning method and scale
for generator, effectiveness of speech embedding, and uti-
lization in image editing are provided in Appendix. More
qualitative results are also illustrated in Fig. B7 and Fig. B8.

5. Conclusion

VoxStudio is the first end-to-end speech-to-image gen-
eration model that totally leverages speech’s expressive-
ness to generate emotionally aligned images. VoxE-
moset is a new benchmark, built cheaply, but complemen-
tary with real-world datasets. Experiments demonstrated
that VoxStudio not only outperforms prior speech-based
methods in conveying sentiment through images, but also
matches text-driven approaches in semantic alignment.
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