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Abstract

A few-shot font generation (FFG) method has to sat-
isfy two objectives: the generated images should preserve
the underlying global structure of the target character and
present the diverse local reference style. Existing FFG
methods aim to disentangle content and style either by ex-
tracting a universal representation style or extracting mul-
tiple component-wise style representations. However, pre-
vious methods either fail to capture diverse local styles or
cannot be generalized to a character with unseen compo-
nents, e.g., unseen language systems. To mitigate the is-
sues, we propose a novel FFG method, named Multiple Lo-
calized Experts Few-shot Font Generation Network (MX-
Font). MX-Font extracts multiple style features not explic-
itly conditioned on component labels, but automatically by
multiple experts to represent different local concepts, e.g.,
left-side sub-glyph. Owing to the multiple experts, MX-Font
can capture diverse local concepts and show the general-
izability to unseen languages. During training, we utilize
component labels as weak supervision to guide each ex-
pert to be specialized for different local concepts. We for-
mulate the component assign problem to each expert as
the graph matching problem, and solve it by the Hungar-
ian algorithm. We also employ the independence loss and
the content-style adversarial loss to impose the content-
style disentanglement. In our experiments, MX-Font outper-
forms previous state-of-the-art FFG methods in the Chinese
generation and cross-lingual, e.g., Chinese to Korean, gen-
eration. Source code is available at https://github.
com/clovaai/mxfont.

1. Introduction

A few-shot font generation task (FFG) [42, 54, 12, 41, 6,
7, 37] aims to generate a new font library using only a few
reference glyphs, e.g., less than 10 glyph images, without
additional model fine-tuning at the test time. FFG is espe-
cially a desirable task when designing a new font library
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Figure 1. Cross-lingual few-shot font generation results by MX-
Font. With only four references, the proposed method, MX-Font,
can generate a high quality font library. Furthermore, we first show
the effectiveness of the proposed method on the zero-shot cross-
lingual few-shot generation task, i.e., generating unseen Korean
glyphs using the Chinese font generation model.

for glyph-rich scripts, e.g., Chinese (> 50K glyphs), Ko-
rean (≈ 11K glyphs), or Thai (≈ 11K glyphs). It is because
the traditional font design process is very labor-intensive
due to the complex characteristics of the font domain. An-
other real-world scenario of FFG is to extend an existing
font design to different language systems. For example, an
international multi-media content, such as a video game or
movie designed with a creative font, is required to re-design
coherent style fonts for different languages.

A high-quality font design is obliged to satisfy two ob-
jectives. First, the generated glyph should maintain all the
detailed structure of the target character, particularly impor-
tant for glyph-rich scripts with highly complex structure.
For example, even very small damages on a local compo-
nent of a Chinese glyph can hurt the meaning of the target
character. As another objective, a generated glyph should
have a diverse local style of the reference glyphs, e.g., serif-
ness, strokes, thickness, or size. To achieve both objectives,
existing methods formulate FFG by disentangling the con-
tent information and the style information from the given
glyphs [42, 54, 12, 6, 37]. They combine the content fea-
tures from the source glyph and the style features from
the reference glyphs to generate a glyph with the reference
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Figure 2. Comparison of FFG methods. Three different groups of FFG are shown. All methods combine style representation fs from a
few reference glyphs (Refs) by a style encoder (Es) and content representation fc from a source glyph (Source) by a content encoder (Ec).
(a) Universal style representation methods extract only a single style feature for each font. (b) Component-conditioned methods extract
component conditioned style features to capture diverse local styles (c) Multiple localized experts method (ours) generates multiple local
features without an explicit condition, but attends different local information of the complex input glyph. The generated images in (a), (b)
and (c) are synthesized by AGIS-Net [12], LF-Font [37] and MX-Font, respectively.

style. Due to the complex nature of the font domain, the ma-
jor challenge of FFG is to correctly disentangle the global
content structure and the diverse local styles. However, as
shown in our experiments, we observe that existing methods
are insufficient to capture diverse local styles or to preserve
the global structures of unseen language systems.

We categorize existing FFG methods into universal style
representation methods [42, 54, 34, 12] and component-
conditioned methods [6, 37]. Universal style representation
methods [42, 54, 34, 12] extract only a single style represen-
tation for each style – see Figure 2 (a). As glyph images are
highly complex, these methods often fail to capture diverse
local styles. To address the issue, component-conditioned
methods [6, 37] utilize compositionality; a character can
be decomposed into a number of sub-characters, or compo-
nents – see Figure 2 (b). They explicitly extract component-
conditioned features, beneficial to preserve the local com-
ponent information. Despite their promising performances,
their encoder is tightly coupled with specific component
labels of the target language domain, which hinders pro-
cessing the glyphs with unseen components or conducting
a cross-lingual font generation.

In this paper, we propose a novel few-shot font genera-
tion method, named Multiple Localized eXperts Few-shot
Font Generation Network (MX-Font), which can capture
multiple local styles, but not limited to a specific language
system. MX-Font has a multi-headed encoder, named mul-
tiple localized experts. Each localized expert is specialized
for different local sub-concepts from the given complex
glyph image. Unlike component-conditioned methods, our
experts are not explicitly mapped to a specific component,
but each expert implicitly learns different local concepts by
weak supervision i.e. component and style classifiers. To
prevent that different experts learn the same local compo-
nent, we formulate the component label allocation problem
as a graph matching problem, optimally solved by the Hun-
garian algorithm [29] (Figure 4). We also employ the in-

dependence loss and the content-style adversarial loss to
enforce the content-style disentanglement by each localized
expert. Interestingly, with only weak component-wise su-
pervision (i.e. image-level not pixel-level labels), we ob-
serve that each localized expert is specialized for differ-
ent local areas, e.g., attending the left-side of the image
(Figure 7). While we inherit the advantage of component-
conditioned methods [6, 37] by introducing the multiple lo-
cal features, our method is not limited to a specific language
by removing the explicit component dependency in extract-
ing features. Consequently, MX-Font outperforms the state-
of-the-art FFG in two scenarios: In-domain transfer sce-
nario, training on Chinese fonts and generating an unseen
Chinese font, and zero-shot cross-lingual transfer scenario,
training on Chinese fonts and generating a Korean font. Our
ablation and model analysis support that the proposed mod-
ules and optimization objectives are important to capture
multiple diverse local concepts.

2. Related Works

Style transfer and image-to-image translation. Few-shot
font generation can be viewed as a task that transfers refer-
ence font style to target glyph. However, style transfer meth-
ods [14, 21, 31, 35, 32, 47] regard the texture or color as a
style while in font generation scenario, a style is often de-
fined by a local shape, e.g., stroke, size, or serif-ness. On
the other hand, image-to-image translation (I2I) methods
[23, 56, 9, 33, 48, 10] learn the mapping between domains
from the data instead of defining the style. For example,
FUNIT [34] aims to translate an image to the given refer-
ence style while preserving the content. Many FFG meth-
ods, thus, are based on I2I framework.
Many-shot font generation methods. Early font genera-
tion methods, such as zi2zi [43], aim to train the mapping
between different font styles. A number of font genera-
tion methods [24, 13, 22, 45] first learn the mapping func-
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Figure 3. Overview of MX-Font. Two modules of MX-Font used for the generation are described. The multiple localized experts (green
box) consist of k experts. Ei (i.e. i-th expert) encodes the input image to the i-th local feature fi and the i-th style and content feature fs,i,
fc,i are computed from fi. The right yellow box shows how the generator G generates the target image. When k style features representing
the target style s̃ and k content features representing the target style c̃ are given, the target glyph having style s̃ and character c̃ is generated
by passing the element-wisely concatenated style and content features to the G.

tion, and fine-tune the mapping function for many refer-
ence glyphs, e.g. 775 [24]. Despite their remarkable per-
formances, their scenario is not practical because collecting
hundreds of glyphs with a coherent style is too expensive. In
this paper, we aim to generate an unseen font library with-
out any expensive fine-tuning and collecting a large number
of reference glyphs for a new style.
Few-shot font generation methods. Since font styles are
highly complex and fine-grained, utilizing statistical tex-
tures as style transfer is challenging. Instead, the majority
of FFG methods aims to disentangle font-specific style and
content information from the given glyphs [54, 41, 2, 12,
42, 30]. We categorize existing FFG methods into two dif-
ferent categories. The universal style representation meth-
ods, such as EMD [54], AGIS-Net [12], synthesize a glyph
by combining the style vector extracted from the reference
set, and the content vector extracted from the source glyph.
MX-Font employs multiple styles, and does not rely on
the font specific loss design, e.g., the local texture refine-
ment loss by AGIS-Net [12]. However, the universal style
representation shows limited performances in capturing lo-
calized styles and content structures. To address the issue,
component-conditioned methods such as DM-Font [6], LF-
Font [37], remarkably improve the stylization performance
by employing localized style representation, where the font
style is described multiple localized styles instead of a sin-
gle universal style. However, these methods require explicit
component labels (observed during training) for the target
character even at the test time. This property limits practical
usages such as cross-lingual font generation. Our method
inherits the advantages from component-guided multiple
style representations, but does not require the explicit labels
at the test time.

3. Method
We introduce a novel few-shot font generation method,

namely Multiple Localized Experts Few-shot Font Genera-
tion Network (MX-Font). MX-Font has a multi-headed en-
coder called multiple localized experts, where i-th head (or

expert Ei) encodes a glyph image x into a local feature
fi = Ei(x) (§3.1). We induce each expert Ei to attend dif-
ferent local concepts, guided by a set of component labels
Uc for the given character c (§3.2). From fi, we compute a
local content feature fc,i and a local style feature fs,i (§3.3).
Once MX-Font is trained, we generate a glyph x̃ with a
character label c̃ and a style label s̃ by combining expert-
wise features fc̃,i and fs̃,i, from the source glyph and the
reference glyph, respectively. (§3.5).

3.1. Model architecture

Our method consists of three modules; 1) k-headed en-
coder, or localized expertsEi, 2) a generatorG, and 3) style
and component feature classifiers Clss and Clsu. We illus-
trate the overview of our method in Figure 3 and Figure 5.
We provide the details of the building blocks in the supple-
mentary materials.

The green box in Figure 3 shows how the multiple lo-
calized experts works. The localized expert Ei encodes a
glyph image x into a local feature fi = Ei(x) ∈ Rd×w×h,
where d is a feature dimension, and {w, h} are spatial di-
mensions. By multiplying two linear weights Wi,c,Wi,s ∈
Rd×d to fi, a local content feature fc,i = W>i,cfi and a lo-
cal style feature fs,i = W>i,sfi are computed. Here, our lo-
calized experts are not supervised by component labels to
obtain k local features f1, . . . , fk; our local features are not
component-specific features. We set the number of the lo-
calized experts, k, to 6 in our experiments if not specified.

We employ two feature classifiers, Clss and Clsu to
supervise fs,i and fc,i, which serve as weak supervision for
fi. The classifiers are trained to predict the style (or com-
ponent) labels, thereby Ei receives the feedback from the
Clss and Clsu that fs,i and fc,i should preserve label in-
formation. These classifiers are only used during training
but independent to the model inference itself. Following the
previous methods [6, 37], we use font library labels for style
labels ys, and the component labels Uc for content labels
yc. The example of component labels is illustrated in Fig-
ure 4. The same decomposition rule used by LF-Font [37]
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Figure 4. An example of localized experts. The number of ex-
perts k is three (E1, E2, E3), and the number of target component
labels m is four (u1, . . . , u4). An edge between an expert Ei and a
component uj means the prediction probability of uj by Ei using
the component classifier Clsu. Our goal is to find a set of edges
that maximizes the sum of predictions, where the number of the
selected edges are upper bounded by max(k,m) = 4 in this ex-
ample. The red edges illustrate the optimal solution.

is adopted. While previous methods only use the style (or
content) classifier to train style (or content), we addition-
ally utilize them for the content and style disentanglement
by introducing the content-style adversarial loss.

The generator G synthesizes a glyph image x̃ by com-
bining content and style features from each expert:

x̃ = G((fs,1 ◦ fc,1), . . . , (fs,k ◦ fc,k)), (1)

where ◦ denotes a concatenate operation.
In the following, we describe the details of each module,

training settings, and how to generate samples with only a
few references.

3.2. Learning multiple localized experts with weak
local component supervision

Our intuition is that extracting different localized fea-
tures can help each local feature to represent the detailed
local structure and fine-grained local style in a complex
glyph image. We utilize the compositionality of the font do-
main to inherit the advantages of component-conditioned
methods [6, 37]. Meanwhile, we intentionally remove the
explicit component dependency of the feature extractor for
achieving generalizability, which is the weakness of previ-
ous methods. Here, we employ a multi-headed feature ex-
tractor, named multiple localized experts, where each expert
can be specialized for different local concepts. A naı̈ve so-
lution is to utilize explicit local supervision, i.e., the pixel-
level annotation for each sub-glyph, unable to obtain due
to expensive annotation cost. As an alternative, a strong
machine annotator can be utilized to obtain local super-
vision [50], but training a strong model, such as the self-
trained EfficientNet L2 with 300M images [46], for the font
domain is another challenge that is out of our scope.

Utilizing the compositionality, we have the weak
component-level labels for the given glyph image, i.e.,

what components the image has but without the knowledge
where they are, similar to the multiple instance learning sce-
nario [36, 55]. Then, we let each expert attend on different
local concepts by guiding each expert with the component
and style classifiers. Ideally, when the number of compo-
nents m is same as the number of experts, k, we expect the
k predictions by experts are same as the component labels,
and the summation of their prediction confidences is max-
imized. When k < m, we expect the predictions by each
expert are “plausible” by considering top-k predictions.

To visualize the role of each expert, we illustrate an
example in Figure 4. Presuming three multiple experts,
they can learn different local concepts such as the left-side
(blue), the right-bottom-side (green), and the right-upper-
side (yellow), respectively. Given a glyph composed of four
components, the feature from each expert can predict one
(E1, E2) or two (E3) labels as shown in the figure. Because
we do not want that an expert is explicitly assigned to a
component label, e.g., strictly mapping “人” component to
E1, we solve an automatic allocation algorithm, finding the
optimal expert-component matching as shown in Figure 4.
Specifically, we formulate the component allocation prob-
lem as the Weighted Bipartite B-Matching problem, which
can be optimally solved by the Hungarian algorithm [29].

From a given glyph image x, each expert Ei extracts the
content feature fc,i. Then, the component feature classifier
Clsu takes fc,i as input and produces the prediction prob-
ability pi = Clsu(fc,i), where pi = [pi0, . . . , pim] and
pij is the confidence scalar value of the component j. Let
Uc = {uc1, . . . , ucm} be a set of component labels of the
given character c, and m be the number of the components.
We introduce an allocation variable wij , where wij = 1 if
the component j is assigned to Ei, and wij = 0 otherwise.
We optimize the binary variables wij to maximize the sum-
mation over the selected prediction probability such that the
number of total allocations is max(k,m). Now, we formu-
late the component allocation problem as:

max
wij∈{0,1}|i=1...k,j∈Uc

k∑
i=1

∑
j∈Uc

wijpij ,

s.t.
k∑

i=1

wij ≥ 1 for ∀j,
∑
j∈Uc

wij ≥ 1 for ∀i,

k∑
i=1

∑
j∈Uc

wij = max(k,m),

(2)

where (2) can be reformulated to the Weighted Bipartite B-
Matching (WBM) problem, and can be solved by the Hun-
garian algorithm in a polynomial time O((m + k)3). We
describe the connection between (2) and WBM in the sup-
plementary materials. Now, using the estimated variables
wij in (2), we optimize auxiliary component classification
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loss Lcls,c with the cross entropy loss (CE) as follows:

Lcls,c,i(fc,i, Uc) =
∑
j∈Uc

wijCE(Clsu(fc,i), j). (3)

Here, we expect that each localized expert is specialized
for a specific local concept so that it facilitates the content-
style disentanglement. Because the feedback from (3) en-
courages the local features to be better separated into the
style and content features, we expect that each expert au-
tomatically attends local concepts. We empirically observe
that each expert is involved to different local areas without
explicit pixel-level supervision (Figure 7).

We additionally formulate the independence between
each expert by the Hilbert-Schmidt Independence Crite-
rion [16] which has been used in practice for statistical
testing [16, 17], feature similarity measurement [28], and
model regularization [38, 51, 3]. HSIC is zero if and only
if two inputs are independent of each other. Since HSIC is
non-negative, the independence criterion can be achieved
by minimizing HSIC. Under this regime, we use HSIC and
lead the local feature fi extracted by Ei independent to the
other local features fi′ as follows:

Lindp exp,i =

k∑
i′=1,i′ 6=i

HSIC(fi, fi′). (4)

We leave the detailed HSIC formulation is in the supple-
mentary materials.

3.3. Content and style disentanglement

To achieve perfect content and style disentanglement, the
style (or content) features should include the style (or con-
tent) domain information but exclude the content (or style)
domain information. We employ two objective functions for
this: content-style adversarial loss and independent loss.

The content-style adversarial loss, motivated by the do-
main adversarial network [11], enforces the extracted fea-
tures for style (or content) is useless to classify content (or
style). Thus, a style feature fs,i is trained to satisfy (1) cor-
rectly classify a style label ys by the style classifier Clss

with the cross entropy loss (CE) and (2) fooling the content
labels predicted by the component classifier Clsu. Specifi-
cally, we maximize the entropy (H) of the predicted proba-
bility to enforce the uniform prediction. Formally, we define
our objective function for a style feature fs,i as follows:

Ls,i(fs,i, ys) = CE(Clss(fs,i), ys)−H(Clsu(fs,i)). (5)

We define Lc,i as the objective function for a content
feature fc,i employs Lcls,c,i (3) instead of the cross entropy
of yc as follows:

Lc,i(fc,i, Uc) = Lcls,c,i(fc,i, Uc)−H(Clss(fc,i)). (6)

We also employ the independence loss between content
and style local features, fc,i and fs,i for the disentanglement
of content and style representations. That is:

Lindp,i = HSIC(fs,i, fc,i). (7)

3.4. Training

We train our model to synthesize a glyph image from
the given content and style labels using the Chinese font
dataset (details in §4.2). More specifically, we construct a
mini-batch, where n glyphs share the same content label yc
(from random styles), and n glyphs share the same style la-
bel ys (from random contents). Then, we let the model gen-
erate a glyph with the content label yc and the style label ys.
In our experiments, we set n = 3 and synthesize 8 different
glyphs in parallel, i.e., the mini-batch size is 24.

We employ a discriminator module D and the genera-
tive adversarial loss [15] to achieve high-quality visual sam-
ples. In particular, we use the hinge generative adversarial
loss Ladv [52], feature matching loss Lfm, and pixel-level
reconstruction loss Lrecon by following the previous high
fidelity GANs, e.g., BigGAN [4], and state-of-the-art font
generation methods, e.g., DM-Font [6] or LF-Font [37]. The
details of each objective function are in the supplementary
materials.

Now we describe our full objective function. The entire
model is trained in an end-to-end manner with the weighted
sum of all losses, including (4), (5), (6), and (7).

LD = LD
adv,

LG = LG
adv + λreconLrecon + Lfm

Lexp =

k∑
i=1

[Ls,i + Lc,i + Lindp,i + Lindp exp,i]

(8)

As conventional GAN training, we alternatively update LD,
LG, and Lexp. The control parameter λrecon is set to 0.1 in
our experiments. We use Adam optimizer [26], and run the
optimizer for 650k iterations. We additionally provide the
detailed training setting is in the supplementary materials.



3.5. Few-shot generation

When the source and a few reference glyphs are
given, MX-Font extract the content features from the
source glyphs and the style features from the reference
glyphs. Assume we have nr number of reference glyphs
xr1, . . . , x

r
nr

with a coherent style ysr . First, our multi-
ple experts {E1, . . . , Ek} extract localized style feature
[f1sr,i, . . . , f

nr

sr,i] for i = 1 . . . k from the reference glyphs.
Then, we take an average over the localized features to rep-
resent a style representation, i.e., fsr,i = 1

nr

∑nr

j=1 f
j
sr,i for

i = 1 . . . k. Finally, the style representation is combined
with the content representation extracted from the known
source glyph to generate unseen style glyph.

4. Experiments
In this section, we describe the evaluation protocols, and

experimental settings. We extend previous FFG benchmarks
to unseen language domain to measure the generalizabil-
ity of a model. MX-Font is compared with four FFG meth-
ods on the proposed extended FFG benchmark via both the
qualitative and quantitative evaluations. Experimental re-
sults demonstrate that MX-Font outperforms existing meth-
ods in the most of evaluation metrics. The ablation and anal-
ysis study helps understand the role and effects of our mul-
tiple experts and objective functions.

4.1. Comparison methods

Universial style representation methods. EMD [54]
adopts content and style encoders that extract universal con-
tent and style features from a few reference glyphs. AGIS-
Net [12] proposes the local texture refinement loss to han-
dle unbalance between the number of positive and negative
samples. FUNIT [34] is not directly proposed for FFG task,
but we employ the modified version of FUNIT as our com-
parison method following previous works [6, 37].
Component-conditioned methods. DM-Font [6] learns
two embedding codebooks (or the dual-memory) condi-
tioned by explicit component labels. When the target char-
acter contains a component either unseen during training or
not in the reference set, DM-Font is unable to generate a
glyph. As these drawbacks are impossible to be fixed with
only minor modifications, we do not compate DM-Font to
MX-Font. LF-Font [37] relaxes the restriction of DM-Font
by estimating missing component features via factorization
module. Although LF-Font is still not applicable to gener-
ate a character with unseen components, we slightly modify
LF-Font (as described in the supplementary materials) and
compare the modified version with other methods.

4.2. Evaluation protocols

To show the generalizability to the unseen language sys-
tems, we propose an extended FFG scenario; training a FFG

model on a language system and evaluating the model on
the other language system. In this paper, we first train FFG
models on the Chinese font dataset, and evaluate them on
both Chinese generation (in-domain transfer scenario) and
Korean generation (zero-shot cross-lingual scenario).
Dataset. We use the same Chinese font dataset collected
by Park et al. [37] for training. The dataset contains 3.1M
Chinese glyph images with 467 different styles, and 19,514
characters are covered. We also use the same decomposition
rule as Park et al. [37] to extract component labels. We ex-
clude 28 fonts, and 214 Chinese characters from the training
set, and use them to evaluation. For the Korean FFG evalua-
tion, we use the same test characters with Cha et al. [6], 245
characters. To sum up, we evaluate the methods by using 28
font styles with 214 Chinese and 245 Korean characters.
Evaluation metrics. Due to the style of the font domain
is defined by a local fine-grained shape, e.g., stroke, size,
or serif-ness, measuring the visual quality with a unified
metric is a challenging problem. A typical challenge is the
multiplicity of the font styles; because the font style is de-
fined locally, there could be multiple plausible glyphs sat-
isfying our objectives. However, we only have one “ground
truth” glyphs in the test dataset. Furthremore, for the Ko-
rean generation task with Chinese references, we even do
not have “ground truth” Korean glyphs with the reference
styles. Thus, we need to employ evaluation metrics that does
not require ground truth, and can evaluate plausibility of the
given samples. We therefore use four different evaluation
metrics to measure the visual quality in various viewpoints.

Following previous works [6, 37], we train evaluation
classifiers that classifies character labels (content-aware)
and font labels (style-aware). Note that these classifiers are
only used for evaluation, and trained separately to the FFG
models. We train three classifiers, the style classifier on
the Chinese test fonts, the content classifier on the Chinese
test characters, and the content classifier on the Korean test
characters. The details of the evaluation classifiers are in the
supplementary materials. Using the classifiers, we measure
the classification accuracies for style and content labels.
We also report the accuracy when both classifiers are cor-
rectly predicted.

We conduct a user study for quantifying the subjective
quality. The participants are asked to pick the three best re-
sults, considering the style, the content, and the most pre-
ferred considering both the style and the content. All 28 test
styles with 10 characters are shown to the participants. For
each test style, we show Chinese and Korean samples sepa-
rately to the users. I.e., a participant picks 28×3×2 = 168
results. We collect the responses from 57 participants. User
study samples are in the supplementary materials.

We also report LPIPS [53] scores to measure the dissim-
ilarity between the generated images and their correspond-
ing ground truth images, thus it is only reported for Chinese



Acc (S) % Acc (C) % Acc (B) % User (S) % User (C) % User (B) % LPIPS ↓ FID (H) ↓

C
N
−→

C
N

EMD (CVPR’18) 6.6 51.3 4.6 0.7 0.1 0.3 0.212 79.7
AGIS-Net (TOG’19) 25.5 99.5 25.4 22.4 34.2 26.8 0.124 19.2
FUNIT (ICCV’19) 34.0 94.6 31.8 22.9 21.6 22.2 0.147 19.2
LF-Font (AAAI’21) 58.7 96.9 57.0 19.5 12.3 15.6 0.119 14.8
MX-Font (proposed) 78.9 99.5 78.7 34.5 31.8 35.2 0.120 21.8

C
N
−→

K
R

EMD (CVPR’18) 4.6 15.4 0.8 0.8 0.1 0.1 - 150.1
AGIS-Net (TOG’19) 13.3 32.1 3.1 1.8 0.6 0.6 - 146.5
FUNIT (ICCV’19) 11.3 66.4 6.6 12.0 17.3 9.1 - 176.0
LF-Font (AAAI’21) 47.6 28.7 12.8 10.6 0.7 1.0 - 148.7
MX-Font (proposed) 66.3 75.9 50.0 74.6 81.3 89.2 - 84.1

Table 1. Performance comparison on few-shot font generation scenario. The performances of five few-shot font generation methods
with four reference images are compared. We report accuracy measured by style-aware (Acc (S)) and content-aware (Acc (C)) classifiers
and accuracy considering both the style and content labels (Acc (B)). The summarized results of the user study are also reported. The User
preference on considering style (User (S)), content (User (C)), both of them (User (B)) are shown. LPIPS shows a perceptual dissimilarity
between the ground truth and the generated glyphs. The harmonic mean (H) of style-aware and content-aware FID is also reported. Note
that the FIDs are computed differently in two FFG scenarios. All numbers are average of 50 runs with different reference glyphs.

Reference

Source

EMD

AGIS-Net

FUNIT

LF-Font

Ours

GT

Figure 6. Generated Samples. The generated images by five different models are shown. We also provide the reference and the source
images used for the generation in the top two rows. The available ground truth images (GT) are shown in the bottom row. We highlight the
samples that reveal the drawback of each model with colored boxes; green for AGIS-Net, red for FUNIT, and yellow for LF-Font.

FFG task. Using the style and content classifiers, Frechét in-
ception distance (FID) [20] between the generated images
and real images are computed and their harmonic mean is
reported (FID(H)). We describe the details in the supple-
mentary materials.

4.3. Experimental results

Quantitative evaluation. Table 1 shows the FFG perfor-
mances by MX-Font and competitors. The reported values
are the average of 50 different experiments, where four ref-
erence images per style are used for font generation in each
experiment. In the table, we observe that MX-Font outper-
forms other methods in the both in-domain transfer scenario
and zero-shot cross-lingual generation scenario with the
most of evaluation metrics. Especially, MX-Font remark-
ably outperforms other methods in the cross-lingual task. In
the in-domain transfer scenario, ours exceeds others in the
classification accuracies and the user study. We observe that

MX-Font perform worse than others in the Chinese FID,
where FID is known to sensitive to noisy or blur images, re-
gardless of the image quality itself [39]. Our method shows
the remarkably better performances in more reliable evalu-
ation, user study in all criterions.

Qualitative evaluation. We illustrated the generated sam-
ples in Figure 6. We show four reference images to extract
each style in the top row, and the source images in the sec-
ond row where each source image is used to extract the con-
tent. In the green box in Figure 6, we observe that AGIS-Net
often fails to reflect the reference style precisely and gener-
ate local details. FUNIT generally shows similar trends with
AGIS-Net, while FUNIT often produces shattered glyphs
when the target glyph and the source glyph have signifi-
cantly different structures (red box). At a glance, LF-Font
seems to capture the detailed local styles well. However, it
often misses important detailed local component such as dot
and stroke, as shown in the yellow box. Comparing to other



Figure 7. Each localized expert attends different local areas. We
show the variance of Class Activation Maps (CAMs) on training
images for each expert. The brighter intensity indicates that the
variance of CAMs is higher in that region.

Source

Ours (k=1)

Ours (k=6)

GT

Figure 8. Generated samples of the models having different
number of heads. The samples generated with four reference
glyphs by the single-headed model and multi-headed model are
shown. We highlight the defects in red dotted circles that appeared
in the images generated by the single-expert model. k denotes the
number of experts.

Acc (S) ↑ Acc (C) ↑ Acc (B) ↑ LPIPS ↓

Ours (k = 1) 72.2 98.7 71.4 0.133
Ours (k = 6) 78.9 99.5 78.7 0.120

Table 2. Impact of the number of experts k. Single-expert model
(k = 1) and multiple-experts model (k = 6, proposed) are com-
pared on in-domain Chinese transfer benchmark.

methods, MX-Font synthesizes the better detailed structures
both in content and style, owing to the strong representa-
tion power of locally specialized experts. The advantage of
MX-Font is highlighted in the cross-lingual FFG. All ex-
isting models often generate unrecognizable characters un-
der the cross-lingual scenario. Nevertheless, MX-Font pre-
serves both the detailed local style and content and gen-
erates the plausible and recognizable images consistently.
Such a noticeable gap in visual quality explains the large
performance leap of MX-Font in the user study.

4.4. Analyses

Learned local concepts by different experts. We show the
local concepts learned by each expert by visualizing where
each expert attends on. We extract the Class Activation
Maps (CAMs) of the training samples using the component
classifier Clsu on each local feature. Then, we visualize the
variance of CAMs in Figure 7. In Figure 7, the region of
each image with bright intensity than the surrounding indi-
cates the region where each expert pays more attention. In-
terestingly, without any explicit pixel-level annotation, our
localized experts attend different local areas of the images.
These maps support that each expert of MX-Font tends to

Acc (S) ↑ Acc (C) ↑ Acc (B) ↑ LPIPS ↓

Ours (Clsu) 78.9 99.5 78.7 0.120
Ours (Clsc) 94.8 0.04 0.04 0.214

Table 3. Comparing the component classifier and the character
classifier as weak supervision. We compare two auxiliary classi-
fiers as content supervision. Ours (Clsu) denotes MX-Font using
the component classifier and Ours (Clsc) denotes the model re-
placed the component classifier to the character classifier.

Lindp,i Hc,s Lc,s Acc (S) Acc (C) Acc (B)

4 4 4 59.0 95.9 56.8
8 4 4 52.0 95.8 50.0
8 8 4 51.6 95.5 49.4
8 8 8 27.8 89.1 24.7

LF-Font [37] 38.5 95.2 36.5

Table 4. Impact of loss functions. We compare models by ablat-
ing the proposed object functions trained and tested on Korean-
handwriting dataset. The results show that the content-style adver-
sarial loss Lc,s and the maximizing entropy term Hc,s and inde-
pendent loss Lindp,i are all important components.

cover different local areas of the input image. Summariz-
ing, these experimental studies demonstrate that multiple
localized experts capture different local areas of the input
image as we intend, and employing multiple localized ex-
perts helps us to enhance the quality of generated images
by preserving the local details during the style-content dis-
entanglement.
Multiple experts vs. single expert. We compare the perfor-
mances of the single expert model (k = 1) with our multi-
ple expert model (k = 6) on benchmark in-domain transfer
scenario. The results are shown in Table 2 and Fig 8. We ob-
serve that using multiple heads is better than a single head
in the classification accuracies. We also observe that the
generated images by the single-headed model fails to pre-
serve the local structures delicately, e.g. important strokes
are missing, while the multi-headed model captures local
details well.
Character labels vs. local component labels. We assume
that component supervision is beneficial to learn experts
with different local concepts. We replace the component su-
pervision (multiple image-level sub-concepts) to the char-
acter supervision (single image-level label). Table 3 shows
that utilizing character supervision incurs a mode collapse.
We speculate that two reasons caused the collapse, (1) the
number of characters (≈ 19k) is too large to learn, while
the number of components is reasonably small (371), and
(2) our best allocation problem prevents the experts from
collapsing into the same values, while the character super-
vised model has no restriction to learn different concepts.
Loss ablations. We investigate the effect of our loss func-
tion design by the models trained and tested on Korean



handwritten dataset. The evaluation results are reported in
Table 4. The detailed training settings are in supplementary
materials.Hc,s denotes the maximizing entropy terms in the
content-style adversarial loss, and Lc,s denotes the content-
style adversarial loss. Table 4 shows that all the proposed
loss functions for the style-content disentanglement are ef-
fective to enhance the overall performances.

5. Conclusion

We propose a novel few-shot font generation method,
namely MX-Font. Our goal is to achieve both the rich rep-
resentation for the local details and the generalizability to
the unseen component and language. To this end, MX-Font
employ multi-headed encoder, trained by weak local com-
ponent supervision, i.e. style and content feature classifiers.
Based on interactions between these feature classifiers and
localized experts, MX-Font learns to disentangle the style
and content successfully by developing localized features.
Finally, the proposed model generates the plausible font im-
ages, which preserve both local detailed style of the refer-
ence images and precise characters of the source images.
Experimental results show that MX-Font outperforms ex-
isting methods in in-domain transfer scenario and zero-
shot cross-lingual transfer scenario; especially large perfor-
mance leap in the cross-lingual scenario.
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Appendix
We describe additional experimental results to comple-

ment the main paper (§A). The implementation details are
in §B. Finally, we provide the detailed evaluation protocols
(§C).

A. Additional experimental results
A.1. More visual examples

We show more generated glyphs in Figure A.2. MX-Font
correctly synthesizes the strokes, dot, thickness and size of
the ground truth glyphs. In the cross-lingual FFG, MX-Font
can produce promising results in that they are all readable.
Meanwhile, all other competitors provide inconsistent re-
sults, which are often impossible to understand. These re-
sults show a similar conclusion as our main paper.

A.2. Impact of the number of experts

In Table A.1, we report the performances by varying the
number of experts, k. We observe that larger k brings bet-
ter performances until k = 6, but larger k, e.g., 8, shows
slightly worse performance than k = 6. We presume that
this is because there are no sufficient data having more than
or equal to eight components for training all the eight ex-
perts to capture different concepts. Figure A.1 illustrates the
frequency of the number of components. From this graph,
we find that the most characters have less than 8 compo-
nents in our Chinese dataset. Moreover, larger k means the
number of parameters are increased, resulting in more train-
ing and inference runtime. Hence, in the paper, we choose
k = 6 for all experiments.

B. Implementation details
B.1. Network architecture

Each localized expert Ei has 11 layers including convo-
lution, residual, global-context [5], and convolutional block
attention (CBAM) [44] blocks. The multiple localized ex-
perts share the weights of their first five blocks. The two
feature classifiers Clss and Clsu have the same structure;
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Figure A.1. The distribution of number of components. The left
shows the percentage of characters with different number of com-
ponents and the right shows the cumulative summation of the left.

k Acc (S) ↑ Acc (C) ↑ Acc (B) ↑ LPIPS ↓

1 72.2 98.7 71.4 0.133
2 79.0 99.3 78.5 0.128
6 78.9 99.5 78.7 0.120
8 75.5 99.5 75.2 0.123

Table A.1. Impact of the number of experts k. The models with
different number of heads are compared on in-domain Chinese
transfer benchmark.

a linear block following two residual blocks. The weights
of the first two residual blocks are shared. The generator G
consists of convolution and residual blocks. Please refer our
code for the detailed architecture.

B.2. Component allocation problem to weighted bi-
partite B-matching problem

Given a bipartite graph G = (V,E), where V is a set
of vertices, E is a set of edges and W is the weight val-
ues for each edge e ∈ E, the weighted bipartite B-matching
(WBM) problem [27] aims to find subgraph H = (V,E′)
maximizing

∑
e∈E W (e) with every vertex v ∈ V adjacent

to at most the given budget, B(v), edges. WBM problem
can be solved by the Hungarian algorithm [29], a typical
algorithm to solve combinatorial optimization in a poly-
nomial time, in O(|V ||E|) = O(|V |3). For curious read-
ers, we refer recent papers solving variants of WBM prob-
lems [8, 1].

We recall the component allocation problem described in
the main paper:

max
wij∈{0,1}|i=1...k,j∈Uc

k∑
i=1

∑
j∈Uc

wijpij ,

s.t.
k∑

i=1

wij ≥ 1 for ∀j,
∑
j∈Uc

wij ≥ 1 for ∀i,

∑
j∈Uc

wij ≤ max

(
1,

⌈
m

k

⌉)
for ∀i

k∑
i=1

wij ≤ max

(
1,

⌈
k

m

⌉)
for ∀j.

(B.1)



Reference

Source

EMD

AGIS-Net

FUNIT

LF-Font

Ours

GT

Reference

Source

EMD

AGIS-Net

FUNIT

LF-Font

Ours

GT

Reference

Source

EMD

AGIS-Net

FUNIT

LF-Font

Ours

Reference

Source

EMD

AGIS-Net

FUNIT

LF-Font

Ours

Figure A.2. Generation samples. We provide more generated glyphs with four reference glyphs.



We replace the last condition,
∑k

i=1

∑
j∈Uc

wij =
max(k,m) to the upper bound condition where d·e denotes
the ceiling function. For example, if k = 3 and m = 4, the
budget for each expert is 2, while the budget for each com-
ponent is 1. We build a bipartite graph where the vertex set
contains all experts and all valid components, and the edge
weights are the prediction probability pij . Now (B.1) can be
re-formulated by the WBM problem.

B.3. HSIC Formulation

When training MX-Font, we let the two feature outputs
from different experts, or content and style features inde-
pendent of each other. To measure the independence be-
tween content feature and style feature, we first assume that
the content features fc and the style features fs are drawn
from two different random variables, Zc and Zs, i.e., fc ∼
Zc and fs ∼ Zs. We employ Hilbert Schmidt independence
criterion (HSIC) [16] to measure the independence between
two random variables. For two random variables Zc and Zs,
HSIC is defined as HSICk,l(Zc, Zs) := ||Ck,l

ZcZs
||2HS where

k and l are kernels, Ck,l is the cross-covariance operator in
the Reproducing Kernel Hilbert Spaces (RKHS) of k and l,
|| · ||HS is the Hilbert-Schmidt norm [16, 17]. If we use ra-
dial basis function (RBF) kernels for k and l, HSIC is zero
if and only if two random variables are independent.

Since we only have the finite number of samples drawn
from the distributions, we need a finite sample estimator of
HSIC. Following Bahng et al. [3], we employ an unbiased
estimator of HSIC, HSICk,l

1 (Zc, Zs) [40] with m samples.
Formally, HSICk,l

1 (Zc, Zs) is defined as:

HSICk,l
1 (Zc, Zs) =

1

m(m− 3)

[
tr(Z̃cZ̃

T
s ) +

1T Z̃c11
T Z̃T

s 1

(m− 1)(m− 2)
− 2

m− 2
1T Z̃cZ̃

T
s 1

] (B.2)

where (i, j)-th element of a kernel matrix Z̃c is defined
as, Z̃c(i, j) = (1 − δij) k(f

i
c, f

j
c ), and the i-th feature in

the mini-batch f ic , is assumed to be sampled from the Zc,
i.e., {f ic} ∼ Zc. We similarly define Z̃s(i, j) = (1 −
δij) l(f

i
s, f

j
s ).

In practice, we compute HSICk,l
1 (Zc, Zs) in a mini-

batch, i.e., m is the batch size. We use the RBF kernel with
kernel radius 0.5, i.e., k(f ic, f

j
c ) = exp(− 1

2‖f
i
c − f jc ‖22).

B.4. GAN objective details

We employ two conditional discriminators Ds and Dc

which predict a style label ys and a content label yc, respec-
tively. In practice, we employ a multitask discriminator D,
and different projection embeddings for content labels and
style labels, following the previous methods [34, 6, 37]. The

hinge loss [52] is employed to high fidelity generation:

LD
adv = E(x,yc,ys) [[1−D(x, ys)]+ + [1−D(x, yc)]+]

+E(x̃,yc,ys) [[1−D(x̃, ys)]+ + [1−D(x̃, yc)]+]

LG
adv = −E(x̃,yc,ys) [D(x̃, ys) +D(x̃, yc)] ,

(B.3)

where x̃ is the generated image by combining a content fea-
ture extracted from an image with content label yc and a
style feature extracted from an image with style label ys.

The feature matching loss Lfm and the reconstruction
loss Lrecon are formulated as follows:

Lfm = E(x,x̃)

[
L−1∑
l=1

‖Dl(x)−Dl(x̃)‖1

]
,

Lrecon = E(x,x̃) [‖x− x̃‖1] ,

(B.4)

where L is the number of layers in the discriminator D and
Dl denotes the output of l-th layer of D.

B.5. Training details

We use Adam [26] optimizer to optimize the MX-Font.
The learning rate is set to 0.001 for the discriminator and
0.0002 for the remaining modules. The mini-batch is con-
structed with the target glyph, style glyphs, and content
glyph during training. Specifically, we first pick the target
glyph randomly. Then, we randomly select n style glyphs
with the same style as the target glyph, and n content glyphs
with the same character as the target glyph for each tar-
get glyph. Here, the target glyph is excluded from the style
and content glyphs selection. We set n to 3 during training.
We set the number of heads k to 6 and train the model for
650k iteration with the full objective functions for the Chi-
nese glyph generation. For the Korean, we set the number of
heads k to 3 and train the model for 200k iteration with the
all objective functions except Lindp exp,i. We do not employ
the Lindp exp,i during training for the Korean glyph genera-
tion, due to the special characteristic of the Korean script;
always decomposed to fixed number of components, e.g., 3.

C. Evaluation details
C.1. Classifiers

Three classifiers are trained for the training; the style
classifier, the Chinese character classifier, and the Ko-
rean character classifier. The style classifier and the Chi-
nese character classifier are trained with the same Chi-
nese dataset, including 209 Chinese fonts and 6428 Chinese
characters per font. Besides, we used the Korean dataset that
DM-Font [6] provides to train the Korean character classi-
fier. The classifiers have ResNet-50 [18] structure. We opti-
mize the classifiers using AdamP optimizer [19] with learn-
ing rate 0.0002 for 20 epochs. During training, the CutMix



(a) User study example (Chinese generation)

(b) User study example (Korean generation)

Figure C.1. User study examples. The example images that we
provide to the candidates are shown. Each image includes the ref-
erence images, source images, and the generated images.

augmentation [49] is adopted and the mini-batch size is set
to 64.

C.2. LF-Font modification

Since LF-Font [37] cannot handle the unseen compo-
nents in the test time due to its component-conditioned
structure, we modify its structure to enable the cross-lingual
font generation. We loose the component-condition of LF-
Font in the test time only, by skipping the component-
condition block when the unseen component is given. Note
that, we use original LF-Font structure for the training to
reproduce its original performance.

C.3. User study examples

We show the sample images used for the user study
in Figure C.1. Five methods, including EMD [54], AGIS-
Net [12], FUNIT [34], LF-Font [37], and MX-Font are ran-
domly displayed to users for every query.

C.4. FID

We measure the style-aware and content-aware Frechét
inception distance (FID) [20] between generated images
and rendered images using the style and content classifier.
For the Chinese glyphs, the style-aware and content-aware
FIDs are measured with the generated glyphs and the corre-
sponding ground truth glyphs. Since the ground truth glyphs
of cross-lingual generation do not exist, the style-aware FID

CN −→ CN CN −→ KR
FIDs S C H S C H

EMD 145.5 51.1 79.7 220.3 113.8 150.0
AGIS-Net 91.0 10.8 19.2 235.5 106.5 146.5
FUNIT 50.6 11.8 19.2 486.4 107.4 176.0
LF-Font 43.5 9.0 14.8 187.8 123.4 148.7
MX-Font 50.5 13.9 21.8 113.2 78.1 84.1

Table C.1. We provide style-aware (S), content-aware(C) FIDs
measured by the style and content classifiers. The harmonic mean
(H) of the style-aware and the content-aware FIDs values are iden-
tical to the values reported in the main table.

is measured the generated glyphs and all the available ren-
dered glyphs having the same style with the generated im-
ages. The content-ware FID is measured similar to the style-
aware FID. The style-aware (S) and the content-aware (C)
FID values and their harmonic mean (H) are reported in
Table C.1. Despite that MX-Font shows the slight degra-
dation in FID for Chinese font generation, these results are
not consistent with the user study and qualitative evaluation.
For quantifying the image quality, we tend to trust the user
study more because it better reveals the user’s preference.


