
1

Few-shot Font Generation with Weakly
Supervised Localized Representations

Song Park*, Sanghyuk Chun*, Junbum Cha, Bado Lee, Hyunjung Shim

Abstract—Automatic few-shot font generation aims to solve a well-defined, real-world problem because manual font designs are
expensive and sensitive to the expertise of designers. Existing methods learn to disentangle style and content elements by developing
a universal style representation for each font style. However, this approach limits the model in representing diverse local styles,
because it is unsuitable for complicated letter systems, for example, Chinese, whose characters consist of a varying number of
components (often called “radical”) — with a highly complex structure. In this paper, we propose a novel font generation method that
learns localized styles, namely component-wise style representations, instead of universal styles. The proposed style representations
enable the synthesis of complex local details in text designs. However, learning component-wise styles solely from a few reference
glyphs is infeasible when a target script has a large number of components, for example, over 200 for Chinese. To reduce the number
of required reference glyphs, we represent component-wise styles by a product of component and style factors, inspired by low-rank
matrix factorization. Owing to the combination of strong representation and a compact factorization strategy, our method shows
remarkably better few-shot font generation results (with only eight reference glyphs) than other state-of-the-art methods. Moreover,
strong locality supervision, for example, location of each component, skeleton, or strokes, was not utilized. The source code is available
at https://github.com/clovaai/lffont and https://github.com/clovaai/fewshot-font-generation.

Index Terms—Few-shot font generation, font generation, few-shot generation, image-to-image translation, computer vision

F

1 INTRODUCTION

Text is a critical resource of information on the web and
publications. Fonts are paints of text-based content design
thus fonts have a significant impact on the overall user
experience and satisfaction with text-based content; such
as logo designs, handouts, magazines, movie posters, and
web pages. For example, “Gotham” font families are widely
adopted for materials that should be objective but convinc-
ing (e.g., election handouts, or memorials). On the other
hand, “Comic Sans” is used for humorous presentations.

However, font design is a labor-intensive and time-
consuming work, requiring elaborate handwork by profi-
cient experts, especially for glyph-rich scripts such as Ko-
rean and Chinese. For example, when creating a new Korean
font library; designers must manually create every single
character per font style, where there are a total of 11,172
possible Korean characters (or at least 2,350 widely used
characters), while maintaining a coherent font style [1]. For
this reason, various font generation methods [2], [3], [4],
[5], [6] have been investigated to address an automatic font
generation problem, which generates a font with a coherent
style of the given reference glyph images; the number of
reference glyphs varies with the application scenario.

In this study, we addressed a practical font generation
scenario: a few-shot font generation problem, in glyph-
rich language systems [5], [6], [7], [8], [9], [10], [11], [12],

• Song Park, and Hyungjung Shim are with the School of Integrated
Technology, Yonsei University, South Korea.

• Sanghyuk Chun is with NAVER AI Lab.
• Sanghyuk Chun, Junbum Cha, and Bado Lee are with the NAVER CLOVA
• Song Park and Sanghyuk Chun contributed equally to this work.
• Hyunjung Shim is a correspondence author (kateshim@yonsei.ac.kr).

Fig. 1. Example font styles of the same character. Font styles
are defined locally by diverse characteristics, such as local
strokes or size of components.

generating a new font library with notably few references (8,
herein). No additional training procedure (e.g., fine-tuning
the model on the reference characters) was performed.
We aimed to generate high-quality, diverse styles in the
few-shot font generation scenario. The few-shot generation
scenario consists of the training and generation stages.
During model training, we rely on paired data that are
easily accessible by public font libraries. In contrast, at the
generation stage, we use only few-shot examples as un-
seen style references and require no additional model fine-
tuning. This scenario is particularly effective in the follow-
ing application scenarios: 1) when the target-style glyphs
are expensive to collect (e.g., historical handwriting), but
there is a large database for existing fonts; or 2) computing
resources are limited to run additional fine-tuning (e.g., on
mobile devices). A popular strategy to tackle this problem
is to separate style and content representations from the
given glyph images [5], [7], [8], [10]. These methods generate
a full-font library by combining target-style representation
and source-content representations.

A major challenge in font generation tasks is that the font
style is often defined locally, e.g., local strokes, serif-ness, or
size of sub-characters as shown in Figure 1. Therefore, a few-
shot font generation method should be capable of extracting
complex local features from very few reference glyphs.

ar
X

iv
:2

11
2.

11
89

5v
1

 [
cs

.C
V

]
 2

2
D

ec
 2

02
1

https://github.com/clovaai/lffont
https://github.com/clovaai/fewshot-font-generation

2

However, previous few-shot font generation methods [5],
[7], [8] learned and extracted a universal style representation
for each style, which is limited in representing diverse local
styles. This is particularly problematic when generating
fonts for glyph-rich scripts, such as Chinese or Korean. For
example, every Chinese character can be divided into a
number of sub-characters or components, with their own
meanings, as shown in Figure 2. Hence, the visual quality
of a Chinese character tends to be highly sensitive to local
damage or a distinctive local component-wise style. As a
result, it is difficult to represent highly complex and diverse
local styles using only a universal style representation.

Cha et al. [6] reported that many previous methods
often fail to transfer unseen styles for the few-shot Korean
generation. To alleviate this problem, they proposed a novel
architecture named DM-Font. DM-font extracts component-
wise local features for all components and utilizes them for
generation. Despite its notable generation quality, DM-Font
is restricted to complete compositional scripts, such as Korean
and Thai [6], [13]. While each Korean character can be de-
composed into a fixed number of components and positions,
more complex scripts (e.g., Chinese) can be decomposed
into varying components and positions. Consequently, we
empirically observe that DM-Font fails to disentangle com-
plex glyph structures and diverse local styles in the Chinese
generation task. Furthermore, DM-Font requires that all
components are shown in the reference set at least once
to construct their memories. In our experiments, DM-Font
tends to require more reference images than others; the
fonts generated by DM-Font show worse visual quality than
other methods using the same number of reference sets (see
Figure 10). These drawbacks limit the applicability of DM-
Font to generate Chinese characters, consisting of hundreds
of components, with a few references.

In this paper, we propose a novel few-shot font gener-
ation with localized style representations and factorization
(LF-Font) that utilizes compositionality, a language-specific
characteristic, and a weak supervised framework for few-
shot font generation. We focus on compositional scripts
whose character is decomposed into a number of sub-
characters or components, as illustrated in Figure 2. Here,
the component labels are weak supervision; the components
in the given glyph are known but their locations are un-
known. With the component labels of the given glyph as
weak supervision, LF-Font learns to disentangle complex
glyph structures and localized style representations, instead
of universal style representations. Owing to powerful repre-
sentations, LF-Font can capture local details in rich text de-
sign, thus successfully handling Chinese compositionality.
We show that without pixel-level guidance of each compo-
nent, the proposed method successfully deals with localized
representations, resulting in generalizability to novel styles
with only very few references compared to previous state-
of-the-art font generation methods.

We define the localized style representation as a
character-wise style feature that considers both a complex
character structure and local styles. Because handling all
characters in the glyph-rich script (e.g. > 50,000 for Chinese
script) is infeasible, we denote the localized style representation
as a combination of component-wise local style representa-
tions to reduce the number of required style features (e.g.,

Chinese script has a few hundred components) (§ 3.3). How-
ever, this strategy can have an inherent limitation: the refer-
ence set must cover the entire component set to construct the
complete font library. It is infeasible when a target script has
a large number of components, e.g., over 200 for Chinese. To
solve this issue, we introduce a factorization module, which
factorizes a localized style feature to a component factor and
a style factor (§ 3.4). Consequently, our method can generate
the whole vocabulary without having the entire components
in the reference style, or utilizing strong locality supervision,
for example, the location of each component or skeleton.

We demonstrate the effectiveness of the proposed LF-
Font on the Chinese and Korean few-shot font generation
scenarios when the number of references is extremely small
(i.e., 8) (§ 4). Our method significantly outperforms five
state-of-the-art few-shot font generation methods with var-
ious evaluation metrics. Careful ablation studies on our
design choice show that the proposed localized style repre-
sentation and factorization modules are an effective choice
to tackle our target problem successively.

This work is an extensive version of our AAAI 2021 [11].
Compared to the AAAI 2021 work, this paper includes
the following additional contributions: (a) reformulation of
the original localized features using a weakly supervised
learning problem (§1, §3), and related discussions (§2); (b)
additional analyses and ablation studies to demonstrate
the effectiveness of the proposed weakly supervised local-
ized style representations; (c) additional comparisons by
varying the reference size from one-shot to a many-shot;
(d) extension to few-shot Korean generation; (e) removing
component conditions in test-time, resulting in showing
superior few-shot generation performances on unseen lan-
guages (e.g., Chinese to Korean generation); and (f) showing
the effectiveness of few-shot font generation methods to the
character recognition systems.

2 RELATED WORKS

Font generation as image-to-image translation and style
transfer. Image-to-image (I2I) translation [14], [15] aims to
learn a mapping between source and target domains while
preserving the contents in the source domain, for example,
day to night. Recent I2I translation methods are extended
to learn a mapping between multiple diverse domains [16],
[17], [18], [19] (i.e., multi-domain translation); thus, they can
be naturally adopted into the font generation problem. For
example, [2] attempted to solve the font generation task via
paired I2I translation by mapping a fixed “source” font to
the target font. Inspired by this approach, several recent
papers [2], [4], [20], [21], [22] addressed the font generation
task by presuming a large set of references, e.g., 775 [4], and
additional finetuning for generating each font. Our scenario
focuses on the few-shot font generation task which requires
only a few reference glyphs without any finetuning.
Font generation as a content-style disentanglement. Our
application scenario is also related to content-style disen-
tanglement approaches, such as style transfer. Style transfer
methods use a pre-trained model that can represent content
and style representations separately by their purpose, e.g.,
artistic styles such as texture or painting styles [23], [24],
[25] or photorealistic styles such as diverse lighting or

3

materials [26], [27], [28]. However, style transfer methods
are designed to capture the “style” as global artistic textures
or photorealistic colors of the given images, while the font
style is defined locally. For this reason, the naı̈ve extension
of existing style transfer approaches to the font generation
task is not effective. The unique characteristics of the font
domain motivate the design of a font domain-specific ap-
proach for few-shot font generation tasks.

Similarly, other content-style disentanglement ap-
proaches, such as image-to-image translation tasks, suffer
from the same issue. For example, most of image-to-image
translation methods to extract style information from the
references [9], [19], [29], [30], [31] relies on AdaIN [24],
designed for style transfer. However, as we observed in
our experiments with FUNIT [9], a universal style extractor
based on AdaIN cannot capture the complex local styles of
glyphs. In this paper, we propose a component-wise local-
ized style representation to mitigate the issue by utilizing
component labels as a weak supervision.

Attribute-conditioned generation and font generation
tasks. Attribute-conditioned (AC) generation methods aim
to generate an image by given attribute conditions, such as
“brown hair color”, “female” [32], [33], [34], [35]. Since a
glyph is conditioned by many components, font generation
tasks can be viewed as AC generation tasks. However, there
are significant differences between AC generation tasks and
font generation tasks. First, a glyph is uniquely defined
for each font design, while an attribute-conditioned image
can be mapped to various images by different viewpoint,
background or lighting [32]. For example, a facial image can
be mapped to other facial images while keeping identity by
changing identity independent information such as view-
point or background. On the other hand, if we change a
component condition of the given glyph, the meaning of
the glyph will be no longer preserved. Second, in the font
domain, it is easy to obtain glyph images with the same
content but different styles, while in general image domains,
e.g., facial images, it is impossible to collect all possible
pairs for the given attributes. In this paper, we focus on
font-specific domain knowledge such as compositionality to
capture complex local styles of glyph images.

Few-shot font generation. The few-shot font generation task
aims to generate new glyphs with very few style references
without additional fine-tuning. The mainstream of few-shot
font generation attempts to disentangle content and style
representations, specialized in font generation tasks. For
example, AGIS-Net [5] proposed a font-specialized local
texture discriminator and local texture refinement loss. Un-
like other methods, DM-Font [6] disassembles glyphs into
stylized components and reassembles them into new glyphs
by utilizing a strong compositionality prior. DG-Font [36]
utilizes deformable convolution [37] to unsupervised font
generation tasks, i.e., assuming there is no paired glyphs
across different styles. In our scenario, we aim to generate
standard true type font libraries hence we assume that there
exist a number of paired glyph images across different styles
by rendering images from the existing font libraries.

Despite notable improvements over the past few years,
previous few-shot font generation methods have signifi-
cant drawbacks. They are 1) infeasible to generate complex

glyph-rich scripts [38]; 2) fail to capture the local diverse
styles [5], [7], [8], [9], [10]; or 3) loss of complex content
structures [6], [13]. Our method employs localized style fea-
tures trained by weak component supervision to capture the
local diverse styles. To prevent the generated glyphs from
losing the complex content structure, we used a content
encoder to preserve the content structure. As a result, the
samples generated by our method show high visual quality
for complex glyph-rich scripts, e.g., Chinese.

Many-shot font generation methods. Although we only fo-
cused on the few-shot font generation problem, several pa-
pers have addressed the Chinese font generation task with
numerous references or additional fine-tuning. SCFont [4]
and ChiroGAN [20] extracted a skeleton or stroke from the
source glyphs and translated it into the target style. They
required a large number of references for generating glyphs
with a new style using the I2I framework, e.g., 775 [4]. In-
stead of expensive skeleton or stroke annotations, different
approaches [6], [7], [21], [22] utilize the compositionality to
reduce the expensive search space in the character space
to smaller component space. For example, RD-GAN [21]
employs an additional LSTM architecture [39] to capture the
compositionality of the given glyph. However, RD-GAN is
designed to reconstruct unseen characters in a fixed style;
thus, it cannot be applied to our few-shot generation sce-
nario, which aims to generate characters with unseen styles.
CalliGAN [22] encodes the styles by one-hot vectors; thus,
it requires additional fine-tuning to create an unseen style
during the training. ChiroGAN [20] aims to solve unpaired
font generation tasks as unpaired image-to-image transla-
tion tasks [15]. However, in our scenario, glyph images can
be easily rendered from an existing font library, as build-
ing a paired training dataset is cheap and does not limit
practical usage. Similarly, StrokeGAN [40] employs one-bit
stroke encoding to capture the key mode information of
Chinese characters on unpaired font generation tasks. Both
StrokeGAN and our method utilize the compositionality (or
stroke information), but StrokeGAN only uses the primal
strokes while ours utilizes the component labels where
strokes and components correspond to “character bytes”
and “tokenized words” in natural language processing. We
did not compare our method to many-shot font generation
methods because their methods are not applicable to our
scenario: there exists very few references (e.g., 8 in our
experiments) and no finetuning procedure is allowed.

Weakly supervised object recognition. In this study, we uti-
lized weak component-level supervision to learn localized
features. Our weak supervision is image-level multi-labels
without pixel-level annotations, that is, the exact position of
each component is unknown. A similar scenario is widely
adopted in many weakly supervised vision recognition
tasks; such as weakly supervised object localization [41],
[42], weakly supervised object detection [43], or weakly
supervised semantic segmentation [44], [45]. These weakly
supervised vision recognition techniques have shown that
with only image-level weak supervision, they can achieve
a reasonable localization ability, for example, locating the
target objects in the image. However, these techniques are
specifically designed for object recognition tasks by intro-
ducing a task-specific module design and training strategy.

4

Fig. 2. Annotation examples. The character label c, style label
s ∈ {s1, s2}, and the component label set Uc are shown.

Fig. 3. Characters from the same component set. Examples
show that a component set is mapped to diverse characters.

Hence, it is difficult to apply their schemes directly to
the few-shot font generation problem. For example, object
localization techniques commonly suffer from performance
bias; the estimated localization map captures only the most
discriminative regions of the object. To resolve this bias,
existing methods have been developed to expand the lo-
calization map. For this purpose, adversarial complemen-
tary learning (ACoL) [46] for weakly supervised object
localization proposes a two-head architecture — where one
head acts as an adversary, and attempts to erase the high-
score region produced by the other. The attention-dropout
layer (ADL) [47] for the same problem is proposed to
erase the highly attended region by channel attention. Both
techniques propose a task-specific module for expanding
the localization maps and require a generic-purpose vi-
sion backbone; namely the ImageNet-pretrained network.
Hence, despite the advances of previous methods in weakly
supervised object recognition, a new methodology is re-
quired to solve a few-shot generation task for a specific
visual domain, that is, the font domain.

3 FEW-SHOT FONT GENERATION WITH WEAKLY
SUPERVISED LOCALIZED REPRESENTATIONS

We propose a novel few-shot font generation framework,
few-shot font generation with localized style representations
and factorization (LF-Font). In this section, we introduce
component-wise localized features trained by language-
specific weak component labels.

3.1 Compositionality: a language-specific image-level
weak supervision

A major challenge in the font generation task for a glyph-
rich script, such as Chinese (> 50K glyphs) or Korean (≈ 11K
glyphs) is the large number of characters to generate. Many
letter systems have a language-specific property, composi-
tionality; a character can be decomposed into a number of
sub-characters or components. It is worth noting that among
the top 30 popular letter systems, 24 have compositionality,
e.g., Chinese, Hindi, Arabic, Japanese, Korean, and Thai (—
See Appendix for examples). Utilizing the predefined de-
composition rule, all characters can be represented by only
a small number of components, for example, 68 components
for Korean and about a few hundred components (371 in

our experiments) for Chinese1. In Figure 2, we illustrate the
example component labels and other annotations of Chinese
characters. As seen in the bottom example of this figure,
some Chinese characters contain duplicated components 2
(“口” is duplicated in this example). We used all duplicated
components as the input for the proposed method.

The component labels are weak supervision; while the
components in the given glyph are known, their locations
are unknown. Furthermore, a component label set can be
mapped to multiple characters. Figure 3 indicates that by
combining three components, four different characters can
be rendered, where the detailed shape of the component
depends on the component location. For example, “口”
(red component in the figure) shows different width and
height ratios, and variable sizes upon different locations.
We designed our model to capture local component features
and to correctly combine them to express the structure of
the target character. In the next subsections, we describe
how LF-Font can deal with both localized component-wise
features and the global structure of the target character.

3.2 Problem definition
We define three annotations for a glyph image x: the style
label s ∈ S , the character label c ∈ C, and the compo-
nent labels Uc = [uc1, . . . , u

c
m], where m is the number

of components in character c. Here, each character c can
be decomposed into components Uc using the predefined
decomposition rule, as shown in Figure 2. In our Chinese
generation tasks; the number of styles |S| = 482, the
number of characters |C| = 19, 514, and the number of
components |U | = 371. In other words, all 19, 514 characters
can be represented by a combination of 371 components.
Our problem definition is not limited to Chinese, but is
easily extended to other languages, as shown in §4.6.

The goal of the few-shot font generation task is to
generate a glyph xs̃,c with unseen target styles s̃ for all
c ∈ C with very few references xs̃,c̃ ∈ Xr , e.g., |Xr| = 8. A
common framework for few-shot font generation is to learn
a generator G which takes the style representation fs̃ ∈ Rd

from Xr and the content representation fc ∈ Rd as inputs.
Then synthesizing a glyph x having the reference styles s̃,
but representing a source character c. Formally, a few-shot
font generation task can be represented as follows:

xs̃,c = G(fs̃, fc),

fs̃ =Es(Xr) and fc = Ec(xs0,c),
(1)

where s0 is the source style label.

3.3 Localized style representations
Previous methods assume that the style representation fs
is universal for each style s. However, the universal style
assumption can overlook complex local styles, resulting in
poor performance for unseen styles as pointed out by [6].
Here, we design the style encoder Es to encode a character-
wise style. This strategy is useful when a style is defined
locally and diversely as Chinese characters. However, the

1. We use the character decomposition data from Wikimedia Com-
mons for Chinese decomposition. https://commons.wikimedia.org/
wiki/Commons:Chinese characters decomposition

https://commons.wikimedia.org/wiki/Commons:Chinese_characters_decomposition
https://commons.wikimedia.org/wiki/Commons:Chinese_characters_decomposition

5

Content Encoding

仟 Ec
fc

Content
RepresentationContent Encoder

Source xs0 ,c Generation

G
Generator

Generated x̃ s,c˜

Reference x˜ ˜s,c

娹 zs0

Uc {女,弓,亠,幺}˜

Uc
 {亻,丿,十}

Component-wise
Style Features

fs,u˜ ˜

fs0 ,u

Fs

Fu

zs̃

zu

zũ

Factorization Modules

Style Factors

Component Factors

fs,u˜

Style Encoding

fs,u˜ ˜

Component-wise
Style Encoder

Es,u
Component

label u, ũ

Component
Classi�er

Es,u

Cls

Char label c

Font label s̃

D

Discriminator

仟
Target xs,c˜

Fig. 4. Overview of LF-Font. LF-Font consists of four parts; the content-encoding Ec, the style-encoding Es,u, Fs, Fu, the
generation G, and the shared modules D,Cls for training. Ec encodes the source glyph to the content representation fc. The
source (solid line) and reference (dashed line) images are encoded to component-wise style features fs,u, and further factorized
into style and component factors zs, zu. zs, zu are combined to the character-wise style representation fs,c of the target glyph. The
generator G synthesizes the target glyph from the fc and fs,c.

large vocabulary size of Chinese script (|C| > 20, 000) makes
it impossible to exploit all character-wise styles.

Instead of handling all character-wise styles, we first
represent the character as a combination of multiple com-
ponents, and develop component-wise styles to minimize
redundancy in character-level representations. For this, we
utilize the component set Uc instead of the character label
c, where |U | � |C| (371 and 19,514 in our experiments).
We extract a component-wise style feature fs,u(x, u) =
Es,u(x, u) ∈ Rd from a reference glyph image x, and a
component label u ∈ Uc — by introducing a component-
wise style encoder Es,u. Here, the component labels are
image-level weak supervision; we only know that there
exists the given components but we do not know where are
they. Our image-level component weak supervision is sim-
ilar to the weak supervision adapted by weakly-supervised
object localization (WSOL), weakly-supervised object detec-
tion (WSOD), or weakly-supervised semantic segmentation
(WSSS). Our goal is to utilize weak image-level component
labels to learn localized style representations without ex-
pensive pixel-level guidance of each component. From this
motivation, we compute the character-aware localized style
feature fs,c by taking the summation over component-wise
features fs,u. Now, we can rewrite Eq (1) with the proposed
character-aware localized style features as follows:

x(s̃, c) = G(fs̃,c, fc), fc = Ec(xs0,c),

fs̃,c =
∑
u∈Uc

fs̃,u =
∑
u∈Uc

Es,u(xs̃,c̃u , u),
(2)

where xs̃,c̃u is a glyph image from the reference set Xr ,
whose character is c̃u, which contains component u. How-
ever, this approach still has a significant drawback. Because
we require the entire set of component-wise style represen-
tations (|U | = 371 for Chinese) to reconstruct the whole
character set, the component labels of a reference set Xr

should cover all components. In the Chinese font generation
scenario, at least 229 reference characters with a coherent
style are required to derive complete component-wise style
representations. In the following section, we introduce our
solution to reduce the required number of reference images.

3.4 Completing missing localized style representa-
tions by factorization modules

Our localized style representation is defined by 1) different
styles and 2) a character-wise manner, i.e., a localized style
representation fs,c is defined by a character c and a style
s. As we defined in Eq (1), when synthesizing a new
character with style s and character c′, we need a feature
fs,c′ . Since during test-time, we do not have c′ with style s,
we decompose fs,c into

∑
u fs,u where u is the component

of c as illustrated in Eq (2). Our component-wise decompo-
sition has two benefits: 1) every Chinese character can be
decomposed into the pre-defined components, therefore we
can define fs,c for any character without observing character
c with style s, 2) the number of representations to learn is
dramatically decreased because the number of characters
(about 20K in our experiments) is much larger than the
number of components (371 in our experiments).

In our scenario, only partial components are observable
from the reference set, whereas the other components are
not accessible by Es,u. However, our formulation in Eq (2)
needs a full access to the whole components for a novel
style. Hence, the localized style feature fs,c for a style
s and a character c with unseen components cannot be
computed, and therefore, G cannot generate a glyph with
c. For example, to generate a new font library, one has to
prepare at least 229 characters whose components can cover
the whole 371 components, while our goal is few-shot font
generation with very few references (e.g., 8).

To tackle this problem, we formulate the few-shot font
generation problem as a reconstruction problem. Here, we
treat each component-style combination as an entry of the
matrix and we assume that some component-style entries
are missed. Our goal is to reconstruct a novel combination
of content-style with previously observed data entries. We
employ the factorization modules motivated by the low-
rank matrix factorization (MF) that assumes the data matrix
X has low rank k, i.e., X = A>B where rank(A) =
rank(B) = k << rank(X). With this assumption, the value
of the entry (i, j) can be computed by a>i bj . However,
applying conventional MF algorithms to every novel style
is inefficient and computationally inefficient. Inspired by
classical matrix completion approaches [48], [49], we decom-
pose the component-wise style feature fs,u ∈ Rd into two
factors: a component factor zu ∈ Rk×d and a style factor

6

zs ∈ Rk×d, where k is the dimension of the factors. Formally,
we decompose fs,u into zs and zu as follows:

fs,u = 1>(zs � zu), (3)

where � is an element-wise matrix multiplication, and
1 ∈ Rk is an all-ones vector. Eq (3) can be interpreted as
the element-wise matrix factorization of fs,u. In practice,
we extract the style factor zs from the reference set and
combine them with the component factor zu from the source
glyph to reconstruct a component-wise style feature fs,u
for the given source character c. Notably, [10], [50] also
uses a factorization strategy for font generation; however,
they directly apply factorization to the complex glyph space
(i.e., each element is an image), while LF-Font factorizes the
localized style features into the style and the content factors.

Traditional matrix completion methods require heavy
computations and memory consumption. For example, ex-
pensive convex optimization [48], or alternative algorithms
[49] are infeasible in our scenario by repeatedly applying
matrix factorization d times to obtain a d-dimensional fea-
ture fs,u. Instead, we propose a style and component factor-
ization module Fs and Fu that extract factors zs, zu ∈ Rk×d

from the given feature fs,u ∈ Rd as follows:

zs = Fs(fs,u;W, b), zu = Fu(fs,u;W, b). (4)

We used a linear weight W = [w1; . . . ;wk] ∈ Rk×d and
bias b ∈ Rk as a factorization module, where each factor is
computed by z = [w1 � fs,u + b1; . . . ;wk � fs,u + bk].

Note that solely employing the factorization modules,
i.e., Eq (4), does not guarantee that factors with the same
style (or component) from different glyphs have identical
values. For example, without any constraint, a style factor
of s extracted by u, Fs(fs,u), and a style factor of s extracted
by u′, Fs(fs,u′), will have different values, while we assume
that each style factor with the same style is identical — Eq
(3). Hence, we add a consistency loss that enforces the fac-
tors to have the same values for the same content or style. In-
tuitively, it can be obtained by minimizing all pair-wise dis-
tances of the factors, i.e., min

∑
u,u′ ‖Fs(fs,u)− Fs(fs,u′)‖22.

Since this equation is identical to minimize the sum of
distances between each factor and their average, we train
the factorization modules Fs and Fu by minimizing the
consistency loss Lconsist as follows:

Lconsist =
∑
s∈S

∑
u∈U
‖Fs(fs,u)− µs‖22 + ‖Fu(fs,u)− µu‖22,

µs =
1

|U|
∑
u∈U

Fs(fs,u), µu =
1

|S|
∑
s∈S

Fu(fs,u).

(5)

After training F , we can extract zs from even a random
single reference glyph. Furthermore, by combining zs with
the content factor zu from the known source glyph, we can
reconstruct the localized style feature fs,c =

∑
u∈Uc

fs,u
even for the unseen component u in the reference set.

3.5 Generation

Once LF-Font is trained with many paired training samples,
it is able to generate any unseen style fonts with only a few
references by extracting the style factor zs̃ from the reference

glyphs, and by extracting zu and fc from the known source
glyphs. Then, we combine zc and zs̃ to generate the localized
style feature fs̃,u, as described in §3.4. Finally, we generate
a glyph x using Equation (2). Formally, LF-Font consists of
three sub-modules, as illustrated in Figure 4.

Style encoding. LF-Font encodes the localized style repre-
sentation fs,c by encoding the component-wise features fs,u
as formulated in Eqs (2), (3) and (4). There are three main
modules in this stage: the component-wise style encoder
Es,u, and the style and content factorization modules Fs

and Fc. Es,u is simply defined by a conditional encoder as
previous generative models [19], [31], where a component
label u is used for the condition label, and encodes a glyph
image x into several component-wise style features fs,u.

More specifically, the component-wise style encoderEs,u

consists of five modules: convolution, residual, component-
conditional, global-context [51], and convolutional block
attention (CBAM) [52]. The component-conditional module
learns a set of channel-wise biases where each bias value is
in charge of each component. The component-wise style en-
coder reflects the given component condition by adding the
corresponding channel-wise bias learned by the component-
conditional module to the intermediate features.

A component-wise style feature fs,u is factorized into the
style factor zs, and component factor zu, with factorization
modules Fs and Fu, respectively. We combine the style
factor zs̃ from the reference glyphs, and component factor
zu from the source glyph, to reconstruct the component-
wise feature fs̃,u. If there is more than one reference sample,
we take the average over the style factors, extracted from
each reference glyph, to compute zs̃.

Our style encoding requires the explicit component la-
bels due to the component-wise style encoderEs,u. Utilizing
character labels as weak supervision during training is
affordable because we use true-type fonts easily accessible
from web for training our models. However, assuming
that character labels are available even in test-time can
limit the applicability of LF-Font when the given reference
glyph images are unlabeled (e.g., historical handwriting).
Furthermore, it hinders LF-Font to generate characters with
unseen components during the training (e.g., generating
glyph images for different language systems).

To mitigate the issues, we introduce an auxiliary clas-
sifier that predicts the character label of the given glyph
image. Our prediction-based inference strategy has two ben-
efits; 1) we can remove the dependency of character labels in
test-time. It can be beneficial when the reference characters
are unlabeled, e.g., historical handwriting. 2) the prediction-
based strategy makes LF-Font handle characters having
unseen components in the training set. For example, the
original LF-Font will not be effective if the target character is
from a different language system, such as Korean characters.
The detailed discussion and experimental results are in §4.7.

Content encoding. Although our style encoding strategy
effectively captures the local component information, it
requires guidance on the complex global structure (e.g.,
relative locations of components) of each character, because
a component set can be mapped to many characters (see
Figure 3). We employ the content encoder Ec to capture the
complex global structural information of the source glyph.

7

It facilitates the generation of the target glyph while pre-
serving complex structural information without any strong
localization supervision of the source glyph.
Generation. Finally, the generator G produces the target
glyph x̃s̃,c by combining the localized style representations
fs̃,c from the style encoding and the global complex struc-
tural representation fc from the encoding.

3.6 Training
Given the source glyph x and the references Xr with the
target style s, LF-Font learns the style encoder Es,u, the
content encoder Ec, the factorization modules Fs, Fu, and
the generator G to generate glyph x̃. We fix the source style
s0 during training and optimize the model parameters with
diverse reference styles using the following losses:
Adversarial loss. We employ a multi-head conditional dis-
criminator for style label s and character label c. The hinge
GAN loss [53] was used.

LD
adv =− E(x,s,c)∼pdata

min (0,−1 +Ds,c(x))

− E(x̃,s,c)∼pgen
min (0,−1−Ds,c(x̃))

LG
adv =− E(x̃,s,c)∼pgen

Ds,c(x̃).

(6)

L1 loss and feature matching loss. These objectives enforce
the generated glyph x̃ to reconstruct the ground truth glyph
x at the pixel level and feature level.

Ll1 = E(x,s,c)∼pdata
[‖x− x̃‖1] ,

Lfeat = E(x,s,c)∼pdata

[
L∑

l=1

‖D(l)
f (x)−D(l)

f (x̃)‖1

]
(7)

where L is the number of layers in the discriminator D, and
D

(l)
f (x) is the intermediate feature in the l-th layer of D.

Component-classification loss. We employ an additional
component-wise classifier Cls that classifies the component
label u of the given component-wise style feature fs,u. We
optimized the cross-entropy loss (CE) as follows:

Lcls =
∑
ũ∈Uc̃

CE(Cls(fs,ũ), ũ) +
∑
u∈Uc

CE(Cls(fs,u), u), (8)

where fs,ũ and fs,u are extracted from the reference glyph
xs,c̃, and the generated glyph x̃s,c.
Full objective. Finally, we optimize LF-Font by the follow-
ing full objective function:

min
Ec,Es,u,G,
Fs,Fu,Cls

max
D
Ladv(font) + Ladv(char) + λL1LL1

+ λfeatLfeat + λclsLcls + λconsistLconsist,

(9)

where λL1, λfeat, λcls, λrep are hyperparameters that con-
trol the effect of each objective. We set λL1 = 1.0 and
λfeat = λcls = λrep = 0.1 throughout all the experiments.
Training details. We used an Adam [54] optimizer with a
learning rate of 0.0008 for the discriminator, and 0.0002 for
the others. We trained the model in two phases for stability.

Our two-phase training is designed for a stable optimiza-
tion of factorization modules. The role of the factorization
modules is to reconstruct the component-wise style repre-
sentations for the unseen components in the reference set.
We observe that jointly training the factorization module

{亻, 山, 隹}
{隹, 口}

{亻, 亠, 父, 攵}

{山, 車, 斤}

G

GeneratorComponent-wise
Style Encoder

f亻

f山

f隹

Es,u

Es,u

Es,u

催Ec

Content Encoder

References

Source

Target

Fig. 5. Mini-batch construction for phase 1 training. During
the first phase of the training, we constructed a mini-batch
with a coherent style, where the component labels of the input
glyphs cover the component labels of the target character.

and randomly initialized features at the same time can make
the convergence unstable as shown in our ablation study
(§4.4.6). Our two-phase training first learns component-
wise style representations and then learns the factorization
modules. At the first phase, we do not train the factoriza-
tion modules by building a mini-batch in a way that the
target character components are completely covered by the
input character components (Figure 5). After training the
component-wise style representations, we train the factor-
ization modules with various styles. The detailed discussion
of our two-phase training strategy is in §4.4.6.

In the first phase, we train the model without factoriza-
tion modules as in Eq (2) until 800k iterations for Chinese
and 200k iterations for Korean. Here, the model is trained
to generate a target glyph from the component-wise style
features fs,u, extracted by the style encoder Es,u from the
reference set Xr. The content feature fc is extracted by the
content encoder Ec from the source glyph. We constructed
a mini-batch with pairs of a reference set, source glyph, and
target glyph. To build each pair, we randomly selected a
style from the training style set and constructed a reference
set and a target glyph, where the components of the target
glyph belong to the components in the reference set, but
the target glyph is not in Xr . The source font was fixed
throughout the training period. We illustrate an example of
mini-batch construction in Figure 5. Here, λconsist is set to
0.0, and the generator G and the component classifier Cls
take the original component-wise style features from Es,u,
e.g., without the factorization procedure, as their input.

After a sufficient number of iterations, we began the
second phase of training. We jointly trained all modules
with the full objective function for 50k iterations. All the
component-wise style features used in the first phase are
replaced by the reconstructed component-wise style features
from style and component factors as Eq (3). The mini-
batch for phase 2 training was constructed differently from
phase 1. Our model cannot deal with component-wise style
features that are not seen in the reference set if factorization
modules are not available. Because the model in the first
phase deactivates the factorization modules, we construct
the mini-batch by having the images in the reference set and
target glyph share the same style. In the second phase, we
build the mini-batch by selecting the images with various
styles in the reference set, and the target glyph with one of
the reference styles. During the second phase of training, we
also enforced the model to reconstruct the reference images
using the original component-wise style features. This was

8

to construct a model that can handle both the original, and
reconstructed component-wise style features.

3.7 LF-FontMix: Font generation as data augmentation

Mix-based augmentations, such as Mixup [55] and CutMix
[56], are widely used for the state-of-the-art image recog-
nition models. While the simple and random mix strategy
surprisingly works well, the augmented images by Mixup
and CutMix are unnatural, limiting their power in complex
and fine-grained datasets [57]. Character recognition sys-
tems are complex and fine-grained systems that also need
careful mixing strategies as fine-grained classification tasks.

We propose LF-FontMix, a novel mix augmentation for
character recognition tasks. Instead of generating mixed
images in the pixel domain, we mix two images in the style
factor space. Formally, let zs,1 and zs,2 be style factor of
images x1 and x2 defined by Eq (4), respectively. Then the
mixed style feature f̂s by LF-FontMix is defined as follows:

f̂s =
∑
u∈Uc

1>((λzs,1 + (1− λ)zs,2)� zu), (10)

where λ ∈ [0, 1] is a combination ratio, sampled from
Beta(α, α) as previous methods [55], [56]. We generate a
mixed image xmix by xmix(x1, x2) = G(f̂s, fc). Here, the
target label is the same as the target character c. The
character-level LF-FontMix is defined similarly as Eq (10),
while the target label is mixed as previous works [55],
[56]. The style mixing strategy makes complex and diverse
font styles without mixing the labels. The character mixing
strategy mixes images and labels at the same time, but the
augmented styles can be limited. In practice, we randomly
alternate style-level and character-level LF-FontMix for ev-
ery iteration to take the advantages of both two strategies.

4 EXPERIMENTS

This section compares the results of LF-Font and previous
methods for Chinese few-shot font generation. We first
introduce the datasets and evaluation metrics (§4.1), and
comparison methods (§4.2). We compare the results of LF-
Font and previous methods for Chinese few-shot font gen-
eration in §4.3. Extensive analysis on each module (§4.4)
showed that our design choice successfully dealt with the

Localized Contents Restricted
style? encoder? to generate

SA-VAE 8 8 unseen chars (train)
EMD 8 4
AGIS-Net 8 4
FUNIT 8 4
DM-Font 4 8 unseen components (refs.)
DG-Font 8 4

Ours 4 4

TABLE 1. Comparison of LF-Font with other methods. We
show the taxonomy of few-shot font generation by the local-
ized style and the content encoder. Note that SA-VAE cannot
generate unseen characters during the training, and DM-Font is
unable to synthesis a glyph whose component is not observable
in the reference glyphs.

few-shot font generation task, e.g., localized style represen-
tation (§4.4.1), content encoder (§4.4.2), utilizing weakly-
supervised component labels to learn complex font informa-
tion (§4.4.3), factorization modules (§4.4.4), the effectiveness
of style representations in extreme cases (§4.4.5), and two-
phase training strategy (§4.4.6). We also provide experi-
mental results with various sizes of reference images, e.g.,
from 1 to 256 (§4.5) and comparisons in Korean generation
tasks (§4.6). Finally, in §4.7, we present a new prediction
strategy for LF-Font when reference images are unlabeled,
e.g., the character labels are not accessible during test-time.
In addition, we show the effectiveness of LF-Font in terms
of data augmentation in §4.8.

4.1 Datasets and evaluation metrics

We collected public 482 Chinese fonts from the Web. The
dataset has a total of 19, 514 characters (each font has a
varying number of characters and it is 6, 654 characters on
average), which can be decomposed by 371 components.
We sample 467 fonts corresponding to 19, 234 characters for
training, and the remaining unseen 15 fonts were used for
the evaluation. The models are separately evaluated with
2, 615 seen characters and 280 unseen characters to measure
the generalizability of the unseen characters.

We evaluated the visual quality of the generated glyphs
using various metrics. To measure the accuracy of the
generated glyphs matching their ground truths, LPIPS [58]
with ImageNet pre-trained VGG-16 was used. LPIPS is
popularly used to assess the similarity between two images
by considering the perceptual similarity.

We further assessed the visual quality of the gener-
ated glyphs in two aspects: content-preserving and style-
adaptation [6]. We trained two classifiers to distinguish the
style or content labels of the test dataset. Note that we
trained the evaluators independently from our generation
models, and the character and font labels for the evaluation
did not overlap with the training labels. ResNet-50 [59] was
employed for the backbone architecture. Compared to pho-
torealistic images, glyph images are highly sensitive to local
damage or distinctive local component-wise information.
We developed evaluation classifiers by employing CutMix
augmentation [56], which leads to a model that can learn
localizable and robust features [60] using the AdamP opti-
mizer [61]. We set a CutMix probability and the CutMix beta
to 0.5 and 0.5, respectively. The batch size, learning rate, and
number of epochs were set to 64, 0.0002, and 20, respectively.
We report the accuracies of the generated glyphs using the
style-aware and content-aware models, respectively. We also
used each classifier as a feature extractor and computed the
Frechét inception distance (FID) [62]. In the experiments, we
denote metrics computed by content and style classifiers as
content-aware and style-aware, respectively.

Finally, we employ a new evaluation metric that mea-
sures how the generated images can reflect a novel font
style, while LPIPS and classifier-based metrics only can
measure the property indirectly. We use the trained style
classifier where the style classifier predicts 482 font styles,
including 15 unseen test styles. After we generate images
by using 15 novel font styles, we predict font styles of
generated images using the trained style classifier. We report

9

LPIPS ↓ Acc (S) ↑ Acc (C) ↑ Acc (Hmean) ↑ FID (S) ↓ FID (C) ↓ FID (Hmean) ↓ punseen
Se

en
ch

ar
s

SA-VAE (IJCAI’18) 0.310 0.2 41.0 0.3 231.8 66.7 103.6 0.01
EMD (CVPR’18) 0.248 11.9 63.7 20.1 148.1 25.7 43.8 0.19
AGIS-Net (TOG’19) 0.182 34.0 99.8 50.7 79.8 4.0 7.7 0.41
FUNIT (ICCV’19) 0.217 39.0 97.1 55.7 58.5 3.6 6.8 0.47
DM-Font (ECCV’20) 0.275 10.2 72.4 17.9 151.8 8.0 15.2 0.25
DG-Font (CVPR’21) 0.189 46.9 98.8 63.6 54.0 2.6 5.0 0.57
LF-Font (proposed) 0.169 75.6 96.6 84.8 40.4 2.6 4.9 0.83

U
ns

ee
n

ch
ar

s EMD (CVPR’18) 0.250 11.6 64.0 19.7 151.7 41.4 65.0 0.19
AGIS-Net (TOG’19) 0.189 33.3 99.7 49.9 85.4 10.0 18.0 0.41
FUNIT (ICCV’19) 0.216 38.0 96.8 54.5 63.2 12.3 20.6 0.46
DM-Font (ECCV’20) 0.284 11.1 53.0 18.4 153.4 26.5 45.2 0.26
DG-Font (CVPR’21) 0.188 46.4 98.7 63.1 57.8 9.0 15.5 0.57
LF-Font (proposed) 0.169 72.8 97.1 83.2 44.5 8.7 14.6 0.82

TABLE 2. Performance comparison on few-shot font generation scenario. Six few-shot font generation methods are compared
with eight reference glyphs. LPIPS shows a perceptual similarity between the ground truth and the generated glyphs. We also
report accuracy and FID measured by style-aware (S) and content-aware (C) classifiers. The harmonic mean (Hmean) of style- and
content-aware metrics shows the overall visual quality of the generated glyphs. punseen indicates the ratio of the generated images
correctly distinguished to unseen styles by the style classifier. All numbers are average of 50 runs with different reference glyphs.

EMD

AGIS-Net

FUNIT

DM-Font

DG-Font

Reference

Source

Ours

GT

Fig. 6. Generated samples. We show characters in the reference set (refer to the character only, not style), source images, generated
samples of LF-Font and five comparison methods, and the target glyphs (see GT). The reference images for each style are shown
in Appendix. We also highlight samples that show the apparent limitation of each method using colored boxes. Each color denotes
the different failure cases discussed in § 4.3.

punseen the ratio of the images predicted as unseen styles not
seen styles. If the style classifier is perfect, punseen denotes
the degree of training style overfitting of the given font
generation method, e.g., a lower punseen denotes that a model
is overfitted to training styles.

4.2 Comparison methods
We compared our model with six state-of-the-art few-shot
font generation methods. In this study, we did not compare
our method with many-shot font generation methods, such
as SC-Font [4], ChiroGAN [20], CalliGAN [22] and RD-GAN
[21], because they need a lot of reference characters and a
finetuning procedure for generating each font style (e.g., SC-
Font needs 755 references) and they are not able to handle
unseen font styles. Our goal is to generate font libraries
without an additional optimization procedure using very
few references (e.g., 8 in our experiments). To understand the
similarity or dissimilarity between methods, we categorize
them by whether or not they explicitly model style repre-
sentations or content representations, as shown in Table 1.

SA-VAE [7] extracts a universal style feature and utilizes
a content code from the character classifier instead of the
content encoder. This method cannot synthesize characters
that are unseen during training.

EMD [8], AGIS-Net [5], FUNIT [9], and DG-Font [36]
employ the content encoder, but their style representation is
universal for the given style. For FUNIT, we use the modi-
fied FUNIT for the font task, as in [6], [13]. We empirically
show that this universal style representation strategy fails
to capture diverse styles, even incorporating specialized
modifications (e.g., the local texture discriminator) and the
local texture refinement loss for AGIS-Net.

DM-Font [6] is the most direct competitor to LF-Font.
Both DM-Font and LF-Font utilize component-wise style
features to capture local details. However, DM-Font is re-
stricted to generating a glyph whose component is not in
the reference set because it uses the learned codebook for
each component instead of the content encoder. Because
DM-Font generates neither Chinese characters nor glyphs
with unseen components, we use the source style to extract

10

local features for substituting the component-wise features
for the unseen component.

As the original DM-Font cannot generate Chinese char-
acters, we modified the structure of DM-Font in our Chinese
few-shot generation experiments. Because Chinese charac-
ters are not decomposed into the same number of com-
ponents, we modified the multi-head structure in DM-Font
to a component-conditioned structure similar to that in LF-
Font and used the averaged component-wise style features
as an input to the decoder. We also changed its attention
blocks to CBAM — and eliminated the hourglass blocks in
the decoder to stabilize the training. For the Korean few-
shot generation experiments, we used the official DM-Font
model and trained weight.

4.3 Experimental results

Quantitative evaluation. We evaluated the visual quality
of the generated images using seven models with eight
reference glyphs per style. To avoid randomness by the ref-
erence selection, we repeated the experiments 50 times with
different reference characters. A font generation method
is required to satisfy two contradictory task objectives: it
should preserve content and stylize well. As an extreme
failure case, it performs an identity mapping, which shows
the perfect content preserving score, but it will show a zero
style transfer score. Hence, we report the harmonic mean of
the content and style scores to probe whether a method can
satisfy both objectives well. Table 2 shows that our method
outperforms previous state-of-the-art methods with signifi-
cant gaps, for example, 20.1pp higher harmonic mean accu-
racy than DG-Font, and 0.3 lower harmonic mean FID than
DG-Font for the unseen characters. Our method outper-
forms other methods in style-aware benchmarks, whereas
content-aware benchmarks are not significantly damaged.
For example, FUNIT, AGIS-Net, and DG-Font show com-
parable performance in content-aware benchmarks to LF-
Font, but they show far lower performances than LF-Font
in style-aware benchmarks. In other words, FUNIT, AGIS-
Net, and DG-Font focus only on content preservation, while
failing to achieve good stylization. We add discussions of
lower content accuracies by LF-Font in §5. Additionally, LF-
Font shows 82% unseen prediction ratio, which is much
higher than DG-Font (57%), FUNIT (46%), and AGIS-Net
(41%). The results support that our localized style repre-
sentation approach has benefits in learning complex local
styles, achieving generalizability to novel styles, while other
methods tend to memorize the styles in the training set.
Qualitative evaluation. We also qualitatively compared
the generated samples using the methods in Figure 6. We
observe that AGIS-Net often drops local details, such as
serif-ness, and varying thickness (blue boxes). The green
boxes show that FUNIT overly relies on the structure of
the source images. Thus, FUNIT tends to destroy the local
structures in the generated glyphs when the source and
the overall structure of the target glyphs differ significantly.
DG-Font produces good-looking results in general, but it
sometimes ignores the reference style and leaves the source
style as it is (yellow boxes). We argue that the universal
style representation strategy of AGIS-Net, FUNIT, and DG-

Font causes these problems. We further provide an extensive
analysis of style representations in the latter section.

DM-Font frequently fails to generate the correct charac-
ters. For example, in the red boxes of Figure 6, DM-Font
often generates a glyph whose relative component locations
are muddled. Another example is in the yellow boxes; DM-
Font generates glyphs with the wrong component, observ-
able in the references. We conjecture that the absence of the
content encoder causes DM-Font to suffer from the complex
structures of glyphs as we observed in §4.4.2.

Compared to others, LF-Font generates the most plausi-
ble results that preserve the local details of each component
and the global structure of characters of target styles.

Accuracies ↑ FIDs ↓
Style representation fs LPIPS ↓ S C H S C H

AGIS-Net 0.189 33.3 99.7 49.9 85.4 10.0 18.0
FUNIT 0.216 38.0 96.8 54.5 63.2 12.3 20.6

Universal without Es,u 0.197 33.6 97.2 49.9 92.9 10.8 19.4
Universal with Es,u 0.187 52.8 95.9 68.1 74.1 9.3 16.5

Localized with Es,u 0.169 72.8 97.1 83.2 44.5 8.7 14.6

TABLE 3. Impact of localized style representation. The uni-
versal style without the component-wise style encoder Es,u is
defined for each style. The universal style with Es,u is com-
puted by the average of the reference component-wise styles.

Accuracies ↑ FIDs ↓
LPIPS ↓ S C H S C H

Few-shot

DM-Font 0.284 11.1 53.0 18.4 152.5 26.3 44.8
LF-Font without Ec 0.255 36.3 15.4 21.7 100.8 28.3 44.2
LF-Font 0.169 72.8 97.1 83.2 44.5 8.7 14.6

Many-shot

DM-Font 0.254 51.8 15.0 23.2 76.3 25.3 38.0
LF-Font without Ec 0.262 37.8 5.1 8.9 97.5 30.3 46.3
LF-Font 0.165 74.7 96.5 84.2 41.4 8.6 14.3

TABLE 4. Impact of content representation. We evaluate DM-
Font, LF-Font without content encoder Ec, and LF-Font, in the
few- (8 references) and many-shot (256 references) scenarios.

GT

LF-Font

LF-Font without Ec

Universal without Es,u

Universal with Es,u

(Localized with Es,u)

Fig. 7. Visual samples of style and content module analysis.
The visual samples in Table 4 and Table 3 are shown.

4.4 Module and parameter analyses

4.4.1 Localized vs. universal style representation
We compare two universal style encoding strategies to our
localized style encoding strategy. First, we train a univer-
sal style encoder that extracts a universal style from the
references. EMD, AGIS-Net, and FUNIT have employed
this scheme. We also develop an alternative universal style

11

encoding strategy with a component-wise style encoder
Es,u. This alternative encoding utilizes Es,u to extract
component-wise features from references; however, the ex-
tracted features are directly used without considering the
target character. On the other hand, our localized style en-
coder encodes character-wise localized style representations
using Es,u and factorization modules.

We conducted an ablation study to investigate the effects
of different style encoding strategies and summarize the
results in Table 3 (the same evaluation setting as Table 2).
In Table 3, we observe that the universal style encoding
without Es,u shows comparable style-aware performance
(33.6%) to AGIS-Net (33.3%) — or FUNIT (38.0%). Also, the
universal style representations by adding the component-
wise style encoder Es,u is useful for increasing the style-
aware metric (33.6% → 52.8%); and our reorganized local-
ized style representation improves the style-aware metric
(33.6% → 72.8%). The generated samples for each ablation
are shown in Figure 7. From these results, we conclude
that the proposed localized style representation enables the
model to capture diverse local styles, whereas the universal
style encoding fails in fine and local styles.

4.4.2 Content encoder
Although localized style encoding brings remarkable im-
provements in transferring a target style, our strategy has
a drawback: it will extract the same feature for characters
whose components are identical, but the locations vary. To
solve this problem, we employ the content encoder Ec to
capture the structural information. Here, we examine var-
ious content-encoding strategies: LF-Font without content-
encoding (generating the target glyph with localized style
features alone), DM-Font (persistent memory for content en-
coding), and LF-Font. DM-Font replaces the content encoder
with persistent memory, which is a learned codebook defined
for each component. Note that DM-Font cannot generate
unseen reference components; thus, we replace the unseen
component features with the source style features. To re-
move unexpected effects from this source style replacement
strategy, we reported many-shot (256 references) results in
addition to the few-shot (8 references) results.

In Table 4, we observe that the content encoder notably
enhances the overall performance (21.7% → 83.2% in few-
shot harmonic mean accuracy). Because there is no content
information, the style encoder of LF-Font withoutEc should
encode both the style and content information of each com-
ponent. However, as the style encoder is optimized for mod-
eling local characteristics, it is limited to handling global
structures (e.g., the positional relationship of components).
In addition, because a combination of a component set can
be mapped to diverse characters, as shown in Figure 3,
solely learning localized style features without global struc-
tures cannot reconstruct the correct character even though
it can capture detailed local styles. Qualitative examples for
LF-Font without the content encoder are shown in Figure 7.

Similar to the content encoder, the persistent memory
strategy proposed by DM-Font, moderately improves the
content performance (15.4% → 53.0%); but shows worse
stylization owing to the source style replacement strategy.
Furthermore, both LF-Font without Ec and DM-Font suffer
from a content performance drop in the many-shot setting.

Accuracies ↑ FIDs ↓
Lconsist Lcls LPIPS ↓ S C H S C H

8 8 0.206 44.5 76.3 56.2 82.1 15.0 25.4
4 8 0.195 47.2 88.6 61.6 77.9 10.7 18.8
8 4 0.169 69.3 97.2 81.1 49.8 8.6 14.7

4 4 0.169 72.8 97.1 83.2 44.5 8.7 14.6

TABLE 5. Impact of objective functions. We report the results
of the different combinations of consistency loss Lconsist and
the component-classification loss Lcls. Our design choice is the
bottom row, which shows the best overall performance.

Accuracies ↑ FIDs ↓
k LPIPS ↓ S C H S C H

4 0.169 71.0 98.0 82.3 46.1 8.8 14.8
6 0.168 72.0 98.0 83.0 44.6 8.6 14.5
8† 0.169 72.8 97.1 83.2 44.5 8.7 14.6
10 0.167 71.4 97.5 82.4 45.6 8.6 14.4

TABLE 6. Factor size study. † used in the remaining results.

This is because their style encoders suffer from encoding the
complex structures — e.g., relative size or positions — of the
unseen styles, as shown in Figure 6 (the yellow boxes).

4.4.3 Weakly supervised component labels
We analyzed the importance of the image-level component
label as weak supervision to learn localized style represen-
tations. We utilized the component labels in two modules.
First, we use the component labels for the component-wise
style encoder Es,u, whose importance has already been
demonstrated in the previous section. The other module
is the auxiliary component classifier Cls, which guides
the local features extracted by Es,u. We conducted a loss
ablation study and demonstrated the effect of utilizing weak
component-level supervision by Lcls. Table 5 illustrates that
utilizing the component supervision is a critical factor for
capturing both diverse local style and global content struc-
ture; the performance gains are significant such as 47.2%→
72.8% for the style accuracy, 88.6%→ 97.1% for the content
accuracy, and 61.6%→ 83.2 for their harmonic mean, respec-
tively. Here, using onlyEs,u still produces better style-aware
performance (47.2%) than AGIS-Net (33.3%) and FUNIT
(38.0%), but the content-aware performance is degraded.
We speculate that this is because of insufficient component
supervision. We observe that Lcls has a particularly large
impact on the style-aware and content-aware performance:
47.2% → 72.8%, 88.6%→ 97.2%. These results demonstrate
that, to improve the overall performance, employing Cls
following Es,u plays a crucial role because the classifier
provides sufficient component supervision to the model.

4.4.4 Factorization modules
The factorization modules (Fs, Fu) takes a key role in LF-
Font in terms of the generalizability to novel styles. In this
subsection, we show the reconstruction capability of the full
feature set from the given features according to the presence
of constraints and factor size.

We first report the performance of the models when the
factors are unconstrained, that is, zu and zs are not unique
for component u and style s in Table 5. The factors con-
strained by Lconsist improve the overall performance; 69.3%

12

Target

Source

Fig. 8. One-shot generation results. The reference characters
and the resultant images were visualized. The top and bottom
rows show the source and target images; and the leftmost
column shows the single reference used to generate the images.

→ 72.8% for the style accuracy, 97.2%→ 97.1% for the con-
tent accuracy, and 81.1% → 83.2 % for the harmonic mean.
These results show that the constrained factors contribute
to the performance improvements but are less effective than
the presence of weak component-level supervision, Lcls.

Table 6 shows performances by varying the factor size
k from 4 to 10. We observe that a larger k enhances the
harmonic mean performance (82.3% → 83.2% when we set
k as 4 → 8), but the overall performance converges after
k ≥ 8. For the efficiency, we use k = 8 in this paper.

4.4.5 Style representation analyses

One-shot generation. We visualize the extreme case, the
one-shot generation, shown in Figure 8. We observe that
when the reference glyph is too simple to extract solid
component-wise features (the second row in Figure 8), the
generated images show poor visual quality. This may be
an issue concerning style factors, not Ec, because the same
content features (from Ec) are used to successfully generate
other samples. Hence, the reference selection with rich local
details is critical to high-quality generation.

Style and character interpolation. Figure 9a shows the
style-interpolated images; we linearly interpolate only the
style factors zs extracted from the character-wise style
features while remaining the component factors zc and
the content representations. We interpolate images in the
character-level similarly (Figure 9b); we interpolated the
component factors zu and the content representations while
remaining the style factors zs. The style interpolation results
show that LF-Font provides semantically meaningful style
features thus presents well-interpolated local features. A
smooth transition across two different styles and content
also demonstrates that LF-Font leads to well-disentangled
content-style representations while capturing diverse font-
specific characteristics and the character contents.

Accuracies ↑ FIDs ↓
Character label LPIPS ↓ S C H S C H

Prediction 0.171 74.1 94.8 83.2 44.3 8.8 14.7
Ground-truth 0.169 72.8 97.1 83.2 44.5 8.7 14.6

TABLE 7. Comparison of different character label rules on
test-time. “Prediction” denotes that LF-Font uses the predic-
tions by an auxiliary character classifier, while “Ground-truth”
uses the ground-truth character labels directly.

(a) Style interpolation (b) Character interpolation
Fig. 9. Interpolation results. The interpolated images by LF-
Font are shown. For each figure, we mix two images from the
leftmost and the rightmost images. We provide three different
mixing strategies (a) mixing images in style representation only
and (b) mixing images in content representations only.

Accuracies ↑ FIDs ↓
Training LPIPS ↓ S C H S C H

End-to-end 0.208 36.6 91.3 52.2 663.8 15.3 30.8
Two-phase (proposed) 0.169 72.8 97.1 83.2 44.5 8.7 14.6

TABLE 8. Ablation of two-phase learning strategy. We com-
pare the proposed two-phase learning strategy and the end-to-
end learning with only a single phase.

4.4.6 Two-phase training vs. end-to-end training
We show the effectiveness of the proposed two-phase train-
ing strategy compared to the end-to-end single-phase strat-
egy. For the end-to-end training, we mix mini-batch selec-
tion policies of phase 1 and 2. Table 8 shows the results. Our
two-phase training strategy shows much more stable con-
vergence than the end-to-end strategy. As we discussed in
§3.6, our two-phase training strategy helps the factorization
modules to learn factorization rules on stable features not
highly varying features.

4.5 Reference size study
Figure 10 shows the performance of few-shot methods
by varying the number of the references from 1 to 256.
In the style-aware metrics, LF-Font performs remarkably
better than all other methods. Surprisingly, LF-Font using
one reference outperforms others using many references
(e.g. 256.) in style-aware metrics. Despite the impressive
style-aware performance, LF-Font shows less stable content-
aware performances than FUNIT, AGIS-Net, and DG-Font
in the low reference regime. However, we observe that the
samples generated by FUNIT, AGIS-Net, and DG-Font with
very few references are rarely stylized, but only maintain
the source shape in Figure 11. As shown in the one-shot
generation results (Figure 8), when the number of references
is extremely small, LF-Font can be sensitive to the reference
sampling, that is, more complex references provide rich local
representations, — thus improving generation performance.

4.6 Extension to other languages
We report the Korean few-shot generation results by LF-
Font, AGIS-Net [5], and DM-Font [6] with four reference

13

Fig. 10. Performance changes by varying size of the reference set. We report how the performance of each model is affected by
the size of the reference set Xr . The style-aware performance and content-aware performance are evaluated by generating seen
characters, and each recorded two metrics: accuracy (higher is better), and FID (lower is better). Each graph shows the average
performance as a line, and errors as an error bar.

EMD

AGIS-Net

FUNIT

DM-Font

DG-Font

Ours

References 1 2 4 8 16 32 64 128 256 1 2 4 8 16 32 64 128 256
Fig. 11. Generated samples by varying reference set size. Each row shows the samples generated by each model. The source and
target glyphs are displayed in the top row.

Reference

Source

AGIS-Net

DM-Font

FUNIT

Ours

GT

Fig. 12. Korean few-shot generation samples. The samples generated by each model and ground truth glyphs are shown. The
samples were generated with four reference images, which are shown in the top row.

LPIPS ↓ Acc (S) ↑ Acc (C) ↑ Acc (Hmean) ↑ FID (S) ↓ FID (C) ↓ FID (Hmean) ↓
AGIS-Net (TOG’19) 0.188 3.9 97.5 7.5 108.1 7.8 14.5
FUNIT (ICCV’19) 0.202 7.3 85.1 13.4 68.4 9.6 16.8
DM-Font (ECCV’20) 0.266 3.4 96.3 6.5 126.3 19.0 33.0
LF-Font (proposed) 0.145 41.6 98.4 58.5 47.2 4.9 8.9

TABLE 9. Performance comparison on few-shot Korean font generation scenario. We report LPIPS, FID and accuracy measures
for AGIS-Net, DM-Font and LF-Font. All numbers are average of 10 runs with different reference glyphs.

glyphs in Table 9. We used the same training and test
datasets used by Cha et al. [6], as well as the evaluation
classifiers. Notably, Cha et al. used a larger reference size
(28 references) and employed a special sampling strategy in
which the sampled reference set covers the complete com-
ponent labels. Following our main experimental protocol,
we report the averages of LPIPS, FID, and accuracies of ten
different runs with different reference selections to reduce

the randomness to the reference selection. In the table,
we observe that LF-Font outperforms DM-Font and AGIS-
Net in terms of overall metrics, particularly in style-aware
metrics. The visual examples are illustrated in Figure 12.

4.7 Generation with pseudo-character labels

LF-Font requires explicit character labels (or component
labels) even in test-time. In this subsection, we compare the

14

pseudo-character label-based prediction strategy (discussed
in §3.5) to the ground-truth character labels. We evaluate
our model in two different scenarios. First, we test the
models in the in-domain transfer scenario, i.e., training
a model on Chinese images and evaluating a model on
Chinese images as same as Table 6. Second, the models are
evaluated on zero-shot cross-lingual scenario; we train a
model on Chinese glpyh images and evaluating the model
by generating Korean images.
In-domain transfer scenario. Table 7 shows the comparison
of the ground-truth character label rule and prediction-
based character-pseudo label rule in Chinese-to-Chinese
generation scenario. Note that we use the same LF-Font
model trained on Chinese script for each character label rule.
In the table, the prediction-based solution shows slightly
lower content performances due to the inherent classifi-
cation errors by our auxiliary character classifier. Interest-
ingly, we observe that the prediction-based solution shows
slightly better style performances than the GT solution, thus
two methods show similar harmonic mean performances.
It implies that the correct component condition is not nec-
essary for better stylization, but it is required for better
content-preserving. We add related discussions in §5.
Zero-shot cross-lingual scenario. We slightly modify the
generation procedure of LF-Font to handle unseen lan-
guage systems by omitting component conditions from the
component-conditioned encoder. This enables the represen-
tation of LF-Font to have universal style. Table 11 shows that
the performances on zero-shot cross-lingual (Chinese-to-
Korean) generation tasks are significantly improved by our
prediction-based strategy. Here, we only report accuracies
because FID and LPIPS need ground-truth target characters
of the given style but our test fonts do not have the target
Korean characters. Note that since Korean and Chinese
do not share their components, the vanilla LF-Font cannot
utilize the power of localized style representations in this
scenario. The Chinese-to-Korean generation results are also
aligned with Table 3; our localized style representation is the
key of the high-quality generation performances.

Vanilla CutMix Ours (S) Ours (C) Ours (S,C)

Accuracy 45.4 51.6 62.4 63.9 66.8

TABLE 10. Comparison of different font augmentations.
Vanilla, CutMix and LF-FontMix (Ours) are shown.

4.8 Font generation as data augmentation

LF-Font shows plausible style- or character-interpolated im-
ages for the given two glyph images (Figure 9), showing its
potential as the effective augmentation policy, LF-FontMix.
We compare our LF-FontMix (§3.7) to the vanilla strategy
(without any augmentation) and CutMix [56]. We train
character classifiers that predict 6,166 distinct characters
using 5 images per character, i.e., when styles are diverse
and each style has very few images. The classifiers are opti-
mized by the AdamP optimizer [61] for 90 epochs with the
initial learning rate 0.0002 decayed by the cosine annealing
scheduler. The batch size is 256. For all mix-based strategies,
the half of mini-batch images are mixed while the remaining

half images are used as the original. The mix combination
ratio λ is sampled from Beta (0.5, 0.5).

We investigate three variations of LF-FontMix; style-mix,
character-mix and style-character-mix (§3.7). We compare
the vanilla, CutMix, and LF-FontMix strategies in Table
10. LF-FontMix remarkably improves character recognition
performances compared to the vanilla (45.4% → 66.8%)
and CutMix (51.6% → 66.8%). We also confirm that solely
adopting the style-mix or the character-mix enhances the
performances. Interestingly, although style-mix does not
mix labels as CutMix or character-mix, it achieves higher
accuracy (62.4%) than the vanilla and CutMix by augment-
ing diverse font styles, while LF-FontMix (C) achieves better
accuracy by mixing images and labels at the same time
(63.9%). Our LF-FontMix (S,C) takes the advantages of style-
mix and character-mix, achieving the best accuracy (66.8%).

5 DISCUSSION AND LIMITATIONS

In this section, we discuss the limitations of LF-Font and the
possible future research directions.
Low content accuracies and failure cases on the low-shot
scenario. In Table 2, LF-Font shows lower content accura-
cies than other methods, e.g., LF-Font shows 96.6% unseen
character accuracy while AGIS-Net shows 99.7% accuracy.
There are two aspects why LF-Font shows lower content
classification accuracies than others. First, LF-Font focused
on learning various local styles. As shown in punseen in Table
2, LF-Font is capable of being generalized to novel styles
while other methods heavily rely on the training styles and
focus on content preserving. The qualitative results in Figure
6 show that the comparison methods overly rely on the
structure of the source image. In other words, there exists
the trade-off between content preserving and stylization
in font generation tasks, e.g., if a model generates source
images without any stylization, the content accuracies will
be always 100%. Hence it is important to simultaneously
consider two different metrics in terms of content score and
style score to evaluate font generation methods. Our LF-
Font shows the best harmonic mean accuracy on both seen
and unseen characters.

Nonetheless, we also observe that our method can fail
to generate very novel styles with very few references.
We report two cases, 1) in Figure 8, we observe that if
the reference components are too simple, LF-Font fails to
preserve the complex structure of the source characters. 2)
in Figure 14, LF-Font fails to generate images with very
novel font style, such as a font with a novel decoration
(circles and butterflies in the top row) or a font with non-
uniform outlines (in the bottom row). We presume that it
is because the component frequency skewness of Chinese
script hinders the training of our component-wise encoder;
Chinese script shows long-tailed components (Figure 13).
Beyond font generation tasks. In this paper, we focus
on few-shot font generation tasks by capturing complex
local styles of the font domain. Although, our key idea on
localized style representations can be extended to general
generation tasks such as attributed-conditioned generation
tasks, there are some challenges on extending LF-Font to
general attributed-conditioned generation tasks.

15

Fig. 13. Component frequency in 19,234 Chinese characters.
Over 50% of components only appear in less than 50 characters.

Source

GT

Generated

GT

Generated

Fig. 14. Generation results of LF-Font on very novel fonts.

Accuracies ↑
S C H

AGIS-Net 14.1 34.0 20.0
DG-Font 46.5 41.2 43.6
FUNIT 11.8 67.2 20.1
LF-Font without Es,u 52.1 35.2 42.0
LF-Font with pseudo character label 70.9 42.9 53.4

TABLE 11. Zero-shot generation results. We train font gener-
ation models in Chinese and test them on the unseen Korean
target characters with Chinese references.

As we discussed in §2, there are two significant differ-
ences between font generation tasks and general attribute-
conditioned generation tasks (e.g., attribute-conditional fa-
cial image generation [32], [33], [34], [35]). First, a glyph
is uniquely defined for each style, while an image can be
diversely mapped to different images even with the same
identity. Second, it is easy to collect a glyph image with
the same content but different styles. Our method heavily
relies on these two font-specific properties in the training
phase. Especially, in the phase 1 training, we construct a
mini-batch where the input images and the target image
have a coherent style, where all components of the target
image can be found in the input components (Figure 5).
Our mini-batch construction strategy let the model learn
component-wise representations but at the same time, limits
the flexibility of LF-Font to general image domains. Note
that in other visual domains (e.g., facial images) constructing
a mini-batch with a coherent style (e.g., the same identity)
but different attributes (e.g., different gender or different
hair color) are difficult, so that many attributed-conditioned
generation methods formulate unpaired image generation
problems while we formulate font generation as the paired
scenario. Extending LF-Font to unpaired image generation
tasks and general image domains will be an interesting
future research direction.

References

Source

AGIS-Net

FUNIT

DG-Font

LF-Font

LF-Font
(without Es,u)

(with pseudo-label)

Fig. 15. Generation results on cross-lingual zero-shot scenario.
In this scenario, we generate Korean glyph images from Chi-
nese references with models trained on Chinese script.

6 CONCLUSION

Our novel few-shot font generation method, named LF-
Font, produces high-quality, complex glyphs using only
a few reference images. By utilizing compositionality, a
language-specific characteristics, LF-Font learns to capture
local component-wise style representations from the given
glyphs with the weak supervision of compositionally. That
is, we only utilize the component labels, not the location of
each component, skeleton, or stroke. To reduce the number
of required references, we propose factorization modules,
which derive the factors and then reconstruct the entire
character-wise style representations from a few reference
images. These factorization modules are trained on the seen
character-wise style representations; but are well general-
ized to the unseen character-wise style representations by
disentangling character-wise style representations into style
and component factors. As a result, LF-Font can handle
the characters unseen in the reference set, which is an
important success factor when dealing with only a few
reference glyphs. In the experiments, LF-Font outperformed
six state-of-the-art few-shot font generation methods on
both Chinese and Korean in various evaluation metrics, par-
ticularly in style-aware benchmarks. Our extensive analysis
of our design choice supports the notion that our framework
effectively disentangles content and style representations,
resulting in high-quality generated samples with only a few
references. Furthermore, to mitigate the inherent drawback
of LF-Font, we employ an auxiliary character classifier on
test-time. The proposed prediction-based inference strategy
enables LF-Font to generate unseen language systems with-
out losing localized style representations. Furthermore, we
demonstrate that LF-Font can be used for data augmenta-
tion of character recognition systems.

ACKNOWLEDGMENTS

This research was supported by the Basic Science Re-
search Program through the NRF Korea funded by the
MSIP (NRF-2019R1A2C2006123, 2020R1A4A1016619), the
IITP grant funded by the MSIT (2020-0-01361, Artificial
Intelligence Graduate School Program (YONSEI UNIVER-
SITY), No.2021-0-02068 (Artificial Intelligence Innovation
Hub)), and the Korea Medical Device Development Fund
grant funded by the Korean government (Project Number:
202011D06).

16

REFERENCES

[1] J. Han, Y. Lee, and S. Ahn, Korean font design textbook. Ahn
graphics, 2009. 1

[2] Y. Tian, “zi2zi: Master chinese calligraphy with conditional
adversarial networks,” 2017. [Online]. Available: https://github.
com/kaonashi-tyc/zi2zi 1, 2

[3] Y. Jiang, Z. Lian, Y. Tang, and J. Xiao, “DCFont: An end-to-end
deep chinese font generation system,” in SIGGRAPH Asia, 2017. 1

[4] Y. Jiang, Z. Lian, Y. Tang, and J. Xiao, “SCFont: Structure-guided
chinese font generation via deep stacked networks,” in AAAI
Conference on Artificial Intelligence, 2019. 1, 2, 3, 9

[5] Y. Gao, Y. Guo, Z. Lian, Y. Tang, and J. Xiao, “Artistic glyph image
synthesis via one-stage few-shot learning,” ACM Transactions on
Graphics, 2019. 1, 2, 3, 9, 12

[6] J. Cha, S. Chun, G. Lee, B. Lee, S. Kim, and H. Lee, “Few-shot
compositional font generation with dual memory,” in ECCV, 2020.
1, 2, 3, 4, 8, 9, 12, 13

[7] D. Sun, T. Ren, C. Li, H. Su, and J. Zhu, “Learning to write
stylized chinese characters by reading a handful of examples,”
in International Joint Conference on Artificial Intelligence, 2018. 1, 2,
3, 9

[8] Y. Zhang, Y. Zhang, and W. Cai, “Separating style and content for
generalized style transfer,” in CVPR, 2018. 1, 2, 3, 9

[9] M.-Y. Liu, X. Huang, A. Mallya, T. Karras, T. Aila, J. Lehtinen, and
J. Kautz, “Few-shot unsupervised image-to-image translation,” in
ICCV, 2019. 1, 3, 9

[10] N. Srivatsan, J. Barron, D. Klein, and T. Berg-Kirkpatrick, “A
deep factorization of style and structure in fonts,” in Conference
on Empirical Methods in Natural Language Processing, 2019. 1, 3, 6

[11] S. Park, S. Chun, J. Cha, B. Lee, and H. Shim, “Few-shot font
generation with localized style representations and factorization,”
in AAAI Conference on Artificial Intelligence, 2021. 1, 2

[12] S. Park, S. Chun, J. Cha, B. Lee, and H. Shim, “Multiple heads are
better than one: Few-shot font generation with multiple localized
experts,” in International Conference on Computer Vision (ICCV),
2021. 1

[13] J. Cha, S. Chun, G. Lee, B. Lee, S. Kim, and H. Lee, “Toward
high-quality few-shot font generation with dual memory,” AI for
Content Creation Workshop. CVPR Workshop, 2020. 2, 3, 9

[14] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image
translation with conditional adversarial networks,” in CVPR, 2017.
2

[15] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-
image translation using cycle-consistent adversarial networks,” in
ICCV, 2017. 2, 3

[16] Y. Choi, M. Choi, M. Kim, J.-W. Ha, S. Kim, and J. Choo, “StarGAN:
Unified generative adversarial networks for multi-domain image-
to-image translation,” in CVPR, 2018. 2

[17] A. H. Liu, Y.-C. Liu, Y.-Y. Yeh, and Y.-C. F. Wang, “A unified feature
disentangler for multi-domain image translation and manipula-
tion,” in Advances in neural information processing systems, 2018. 2

[18] X. Yu, Y. Chen, S. Liu, T. Li, and G. Li, “Multi-mapping image-
to-image translation via learning disentanglement,” in Advances in
Neural Information Processing Systems, 2019. 2

[19] Y. Choi, Y. Uh, J. Yoo, and J.-W. Ha, “StarGAN v2: Diverse image
synthesis for multiple domains,” in CVPR, 2020. 2, 3, 6

[20] Y. Gao and J. Wu, “Gan-based unpaired chinese character image
translation via skeleton transformation and stroke rendering,” in
Proceedings of the AAAI Conference on Artificial Intelligence, 2020. 2,
3, 9

[21] Y. Huang, M. He, L. Jin, and Y. Wang, “Rd-gan: Few/zero-shot
chinese character style transfer via radical decomposition and
rendering,” in ECCV, 2020. 2, 3, 9

[22] S.-J. Wu, C.-Y. Yang, and J. Y.-j. Hsu, “Calligan: Style and structure-
aware chinese calligraphy character generator,” AI for Content
Creation Workshop. CVPR Workshop, 2020. 2, 3, 9

[23] L. A. Gatys, A. S. Ecker, and M. Bethge, “Image style transfer using
convolutional neural networks,” in CVPR, 2016. 2

[24] X. Huang and S. J. Belongie, “Arbitrary style transfer in real-time
with adaptive instance normalization,” in ICCV, 2017. 2, 3

[25] Y. Li, C. Fang, J. Yang, Z. Wang, X. Lu, and M.-H. Yang, “Uni-
versal style transfer via feature transforms,” in Advances in Neural
Information Processing Systems, 2017. 2

[26] F. Luan, S. Paris, E. Shechtman, and K. Bala, “Deep photo style
transfer,” in CVPR, 2017. 3

[27] Y. Li, M.-Y. Liu, X. Li, M.-H. Yang, and J. Kautz, “A closed-form
solution to photorealistic image stylization,” in ECCV, 2018. 3

[28] J. Yoo, Y. Uh, S. Chun, B. Kang, and J.-W. Ha, “Photorealistic style
transfer via wavelet transforms,” in ICCV, 2019. 3

[29] X. Huang, M.-Y. Liu, S. Belongie, and J. Kautz, “Multimodal
unsupervised image-to-image translation,” in Proceedings of the
European conference on computer vision (ECCV), 2018, pp. 172–189. 3

[30] T. Karras, S. Laine, and T. Aila, “A style-based generator archi-
tecture for generative adversarial networks,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 4401–4410. 3

[31] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila,
“Analyzing and improving the image quality of stylegan,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2020, pp. 8110–8119. 3, 6

[32] X. Yan, J. Yang, K. Sohn, and H. Lee, “Attribute2image: Con-
ditional image generation from visual attributes,” in European
Conference on Computer Vision. Springer, 2016, pp. 776–791. 3,
15

[33] J. Choe, S. Park, K. Kim, J. Hyun Park, D. Kim, and H. Shim,
“Face generation for low-shot learning using generative adversar-
ial networks,” in Proceedings of the IEEE International Conference on
Computer Vision Workshops, 2017, pp. 1940–1948. 3, 15

[34] Y. Lu, Y.-W. Tai, and C.-K. Tang, “Attribute-guided face generation
using conditional cyclegan,” in Proceedings of the European confer-
ence on computer vision (ECCV), 2018, pp. 282–297. 3, 15

[35] Z. He, W. Zuo, M. Kan, S. Shan, and X. Chen, “Attgan: Facial
attribute editing by only changing what you want,” IEEE transac-
tions on image processing, vol. 28, no. 11, pp. 5464–5478, 2019. 3,
15

[36] Y. Xie, X. Chen, L. Sun, and Y. Lu, “Dg-font: Deformable generative
networks for unsupervised font generation,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021, pp. 5130–5140. 3, 9

[37] X. Zhu, H. Hu, S. Lin, and J. Dai, “Deformable convnets v2:
More deformable, better results,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019, pp.
9308–9316. 3

[38] S. Azadi, M. Fisher, V. G. Kim, Z. Wang, E. Shechtman, and
T. Darrell, “Multi-content gan for few-shot font style transfer,” in
CVPR, 2018. 3

[39] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997. 3

[40] J. Zeng, Q. Chen, Y. Liu, M. Wang, and Y. Yao, “Strokegan:
Reducing mode collapse in chinese font generation via stroke
encoding,” in proceedings of AAAI, 2021. 3

[41] J. Choe, S. J. Oh, S. Lee, S. Chun, Z. Akata, and H. Shim, “Eval-
uating weakly supervised object localization methods right,” in
Conference on Computer Vision and Pattern Recognition (CVPR), 2020.
3

[42] J. Choe, S. J. Oh, S. Chun, S. Lee, Z. Akata, and H. Shim, “Evalu-
ation for weakly supervised object localization: Protocol, metrics,
and datasets,” arXiv preprint arXiv:2007.04178, 2020. 3

[43] H. Bilen and A. Vedaldi, “Weakly supervised deep detection
networks,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 2846–2854. 3

[44] G. Papandreou, L.-C. Chen, K. P. Murphy, and A. L. Yuille,
“Weakly-and semi-supervised learning of a deep convolutional
network for semantic image segmentation,” in Proceedings of the
IEEE international conference on computer vision, 2015, pp. 1742–
1750. 3

[45] J. Xu, A. G. Schwing, and R. Urtasun, “Learning to segment under
various forms of weak supervision,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2015, pp. 3781–
3790. 3

[46] X. Zhang, Y. Wei, J. Feng, Y. Yang, and T. S. Huang, “Adversarial
complementary learning for weakly supervised object localiza-
tion,” in CVPR, 2018, pp. 1325–1334. 4

[47] J. Choe and H. Shim, “Attention-based dropout layer for weakly
supervised object localization,” in CVPR, 2019, pp. 2219–2228. 4

[48] E. J. Candès and B. Recht, “Exact matrix completion via convex
optimization,” Foundations of Computational mathematics, 2009. 5, 6

[49] J.-F. Cai, E. J. Candès, and Z. Shen, “A singular value thresholding
algorithm for matrix completion,” SIAM Journal on optimization,
2010. 5, 6

[50] J. B. Tenenbaum and W. T. Freeman, “Separating style and content
with bilinear models,” Neural computation, vol. 12, no. 6, pp. 1247–
1283, 2000. 6

https://github.com/kaonashi-tyc/zi2zi
https://github.com/kaonashi-tyc/zi2zi

17

[51] Y. Cao, J. Xu, S. Lin, F. Wei, and H. Hu, “GCNet: Non-local
networks meet squeeze-excitation networks and beyond,” in IEEE
International Conference on Computer Vision Workshops, 2019. 6

[52] S. Woo, J. Park, J.-Y. Lee, and I. So Kweon, “Cbam: Convolutional
block attention module,” in ECCV, 2018. 6

[53] H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena, “Self-
attention generative adversarial networks,” in ICML, 2019. 7

[54] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” in ICLR, 2015. 7

[55] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup:
Beyond empirical risk minimization,” in ICLR, 2018. 8

[56] S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, and Y. Yoo, “Cutmix:
Regularization strategy to train strong classifiers with localizable
features,” in ICCV, 2019. 8, 14

[57] L. Zhang, S. Huang, and W. Liu, “Intra-class part swapping for
fine-grained image classification,” in Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, 2021, pp. 3209–
3218. 8

[58] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang,
“The unreasonable effectiveness of deep features as a perceptual
metric,” in CVPR, 2018. 8

[59] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in CVPR, 2016. 8

[60] S. Chun, S. J. Oh, S. Yun, D. Han, J. Choe, and Y. Yoo, “An em-
pirical evaluation on robustness and uncertainty of regularization
methods,” ICML Workshop on Uncertainty and Robustness in Deep
Learning, 2019. 8

[61] B. Heo, S. Chun, S. J. Oh, D. Han, S. Yun, G. Kim, Y. Uh, and
J.-W. Ha, “Adamp: Slowing down the slowdown for momentum
optimizers on scale-invariant weights,” in International Conference
on Learning Representations (ICLR), 2021. 8, 14

[62] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochre-
iter, “GANs trained by a two time-scale update rule converge
to a local nash equilibrium,” in Advances in Neural Information
Processing Systems, 2017. 8

Song Park is also a Ph.D. candidate at the
School of Integrated Technology, Yonsei Univer-
sity, South Korea. She received her B.S. degree
in Integrated Technology from Yonsei University,
Seoul, Korea, in 2016. Her recent research inter-
ests include computer vision and machine learn-
ing.

Sanghyuk Chun is a lead research scientist at
the NAVER AI Lab. He was a research engineer
at an advanced recommendation team in Kakao
Corp from 2016 to 2018. He received his Mas-
ter’s and Bachelor’s degrees in Electronical En-
gineering from KAIST, Daejeon, Korea, in 2016
and 2014, respectively. His research interests
focus on reliable machine learning and vision-
and-language.

Junbum Cha is a research engineer at Clova
OCR, NAVER Corp. He developed an AI go
engine at the game AI team in the NHN Corp
from 2017 to 2019. He received his Master’s
and Bachelor’s degrees in computer science
from Yonsei University, Seoul, Korea, in 2017
and 2015, respectively. His research interests
include generative models, automated machine
learning, and robust machine learning.

Bado Lee is a team leader and developer at
Clova OCR, NAVER Corp. He was a developer
at the Samsung Mobile Division from 2012 to
2017. He received his Master’s and Bachelor’s
degrees in Electrical Engineering from Seoul
National University, Seoul, Korea, in 2012 and
2010, respectively. His research interests focus
on computer vision and image processing.

Hyunjung Shim received her B.S. in Electrical
Engineering from Yonsei University, Seoul, Ko-
rea, in 2002, and her M.S. and Ph.D. in Electrical
and Computer Engineering from Carnegie Mel-
lon University, Pittsburgh, PA, USA, in 2004 and
2008, respectively. She was with Samsung Ad-
vanced Institute of Technology, Samsung Elec-
tronics Company, Ltd., Suwon, Korea, from 2008
to 2013. She is currently an associate professor
at the School of Integrated Technology, Yonsei
University. Her research interests include gen-

erative models, deep neural networks, classification/recognition algo-
rithms, 3-D vision, inverse rendering, face modeling, and medical image
analysis.

18

Reference images
(8 samples)

Generated glyphs
(19,514 characters)

Source glyphs
(19,514 characters)

Model

Fig. 16. Overview of few-shot font generation tasks. The few-shot font generation task aims to generate a full font library (19,514
characters in our Chinese generation scenario) with a coherent style with only a few references (eight glyphs in our experiments).

Chinese

Korean

Thai

Hindi

Japanese

Fig. 17. Example compositionality of widely-used languages.

Fig. 18. Reference images with target styles. We visualized the
eight reference samples per style used in Figure 8. Each row
corresponds to the two columns of Figure 8 in the same order.

19

Source

EMD

AGIS-Net

FUNIT

DM-Font

DG-Font

LF-Font

GT

Source

EMD

AGIS-Net

FUNIT

DM-Font

DG-Font

LF-Font

GT

Source

EMD

AGIS-Net

FUNIT

DM-Font

DG-Font

LF-Font

GT
Fig. 19. More generation samples. We provide more generated glyphs.

