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Abstract

Recently, large-scale vision-language pre-training mod-
els and visual semantic embedding methods have signif-
icantly improved image-text matching (ITM) accuracy on
MS COCO 5K test set. However, it is unclear how ro-
bust these state-of-the-art (SOTA) models are when using
them in the wild. In this paper, we propose a novel evalu-
ation benchmark to stress-test the robustness of ITM mod-
els. To this end, we add various fooling images and cap-
tions to a retrieval pool. Specifically, we change images by
inserting unrelated images, and change captions by sub-
stituting a noun, which can change the meaning of a sen-
tence. We discover that just adding these newly created
images and captions to the test set can degrade perfor-
mances (i.e., Recall@1) of a wide range of SOTA models
(e.g., 81.9%→ 64.5% in BLIP, 66.1%→ 37.5% in VSE∞).
We expect that our findings can provide insights for improv-
ing the robustness of the vision-language models and de-
vising more diverse stress-test methods in cross-modal re-
trieval task. Source code and dataset will be available at
https://github.com/pseulki/rococo.

1. Introduction
Understanding the visual world with language is a cru-

cial ability for artificial intelligence, which has inspired
the research of image-text matching. Recently, the devel-
opment of various methods [49, 16, 10] and large-scale
vision-language pretraining models [60, 79, 47] have sig-
nificantly improved image-text matching accuracy (i.e., re-
call@1). However, how much can we trust these numbers?
How are we good, when using it in the wild?

Figure 1 shows an example of the test results, when
adding additional images and texts to COCO [54] test set,
tested with the recent state-of-the-art (SOTA), BLIP [47].
When we retrieve the top-ranked text from a given image,
the “umbrella” is mistakenly recognized as a “gun”. Mean-
while, given the text, the image partially mixed with unre-
lated image (i.e., skiing on the snow) is retrieved as top 1, in-
stead of the correct clean image. These errors can pose seri-

Figure 1: Example of Image-text matching (ITM) results
from the state-of-the-art BLIP [47]. When we add a new
caption with only one word changed from “umbrella” to
“gun”, this new caption is retrieved as top 1 (Image-to-text).
Likewise, when we add a new image created by inserting
an unrelated image to the original one, this new image is
ranked as top 1 (Text-to-image). In this paper, we discover
the common weakness in ITM models and propose a novel
robustness-evaluation benchmark.

ous risks, when deploying a model in real life. For example,
an innocent citizen may be perceived as a threat when used
in a defense industry (e.g., Fig. 1 Upper). Or, malicious im-
ages (e.g., pornographic pictures) can be inserted into other
images to make them searchable on websites (e.g., Fig. 1
Lower). Lastly, these errors can greatly damage the trust of
AI users. Therefore, the robustness test is important.

To evaluate the robustness of the models, various at-
tempts have been made in computer vision [33, 35, 32], and
natural language processing (NLP) [37, 2, 21] areas, respec-
tively. Recently, various robustness test methods have been
introduced for multi-modal tasks, such as in visual question
answering (VQA) [78, 28, 63, 26, 64, 51] and image cap-
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tioning [59]. While stress-test datasets for fooling models
have been actively proposed in the field of VQA, to the best
of our knowledge, there has been no proposed dataset in the
image-text retrieval task yet.

In this paper, we propose a novel evaluation benchmark
to stress-test how robust the model is in image-text match-
ing. While the existing image-text retrieval has been evalu-
ated on a well-set query-image/text pool, we add various
fooling text/images that can exist in real scenarios. Sur-
prisingly, the models are easily fooled by simply changing
words (e.g., umbrella → gun, man → pizza) or attaching
a completely unrelated image to the original image, which
would not confuse human at all. For example, by adding
such examples to the original test set, the image-to-text re-
trieval accuracy (i.e., recall@1) has significantly dropped
from 81.9% → 64.5% in BLIP, and 66.1% → 37.5%
in VSE∞ [10] Also, for text-to-image retrieval, the re-
call@1 has dropped from 64.3% → 40.7% in BLIP, and
51.6% → 34.3% in VSE∞. We verify the consistent per-
formance drop in other models as well regardless of using
large-scale pre-training datasets or not. In addition, we ob-
serve the SOTA model could even confuse nonsensical cap-
tions when we further break the semantic meaning of the
caption by replacing multiple words (e.g., “a grey computer
mouse and a silver metal key.” → “a baths light bent over
wartime seo wasn.”). From the observations, we conjecture
that it is important to devise a robust learning algorithm,
such that the model can better learn the word-level seman-
tic meaning and its alignment to images.

Our key contributions can be summarized as follows:
• We provide various robustness-evaluation benchmark for

image-text matching.
• We evaluate the state-of-the-art ITM models whose

weights are publicly available on our newly proposed
dataset and discover the significant performance drops
across all models.

• Our results show that current models are paying attention
to specific word or image part, rather than understanding
the whole semantic meaning well.

We expect that our findings can provide insights for improv-
ing the robustness of the vision-language models and de-
vising more diverse stress-test methods in cross-modal re-
trieval task.

2. Related Work
2.1. Image-Text Matching

Methods. Most image-text matching (ITM) meth-
ods [24, 23, 65, 36, 16, 71, 77] aim to learn joint visual-
semantic embedding (VSE) such that paired image and
text representation in the embedding space are close. Many
VSE methods [44, 70, 20, 10] use region features extracted
from Faster R-CNN [62] with bottom-up attention [3].

VSE∞ [10] also use grid features extracted from Faster R-
CNN pre-trained on Visual Genome [42] and ImageNet [18]
in [3], and Instagram pretrained ResNext-101 [72].

In recent years, large-scale pre-training models [12, 53,
79, 38, 40, 48, 47, 55, 13, 73, 1] have shown strong achieve-
ment in both zero-shot and fine-tuned performances. Most
of these models adopt transformer architecture and can
learn cross-modal representations benefiting from large-
scale image-text pairs. For a more thorough study, we re-
fer the reader to a recent survey [7]. In this paper, we re-
evaluate the robustness of state-of-the-art ITM models.

Datasets. Recently, new ITM benchmark datasets [58,
15] have been proposed by extending MS COCO. Criss-
crossed Captions (CxC) [58] add semantic similarity be-
tween all pairs to improve limited associations in MS
COCO. Thus, CxC has enabled scoring between intra- and
intermodality pairs. Meanwhile, ECCV caption [15] pro-
vides abundant positive image-caption pairs to correct the
false negatives in MS COCO. While the previous works
provided improved benchmark datasets, our main difference
is that we aim to test the vulnerability of the models.

2.2. Robustness Test

Unimodal: After the initial finding [67] that deep learn-
ing (DL) models are vulnerable to imperceptible perturba-
tions, robustness in deep learning methods has actively stud-
ied in both computer vision and natural language process-
ing (NLP) areas. In computer vision, one research direction
is data poisoning [5, 66, 34, 29, 11], which attacks the ro-
bustness of models during training by adding images with
small perturbations. Meanwhile, adversarial attack studies
[27, 43, 9, 17, 30] inject imperceptible noises to test im-
ages so that a model can make wrong predictions. For im-
age retrieval task, Li et al. [46] showed that adding invis-
ible noise to query image can make the model return in-
correct images. Another line of research has proposed new
ImageNet benchmarks for common robustness evaluation.
For example, ImageNet-C [33] is applied with 75 common
visual corruptions, and ImageNet-P [33] is implemented
with common perturbations. Also, ImageNet-A [35] pro-
vides images belonging to ImageNet classes but more dif-
ficult, and ImageNet-R [32] introduces examples with vari-
ous renditions. In NLP, research on data poisoning [69] and
adversarial attacks [22, 2, 39, 25, 45, 21, 6] has also been ac-
tively studied to fool the prediction of models. Adversarial
examples are produced by character-level modifications [4],
paraphrasing sentences [37], or substituting a word with a
synonym [61, 52].

The main difference between these methods and our
work is that while the previous works generate human
imperceptible noises and semantic-preserving texts, we
rather generate perceptibly different images and semantic-
breaking texts. Our intuition is straightforward: a robust



model should not be at least confused by the examples
which are easy for human.

Multimodal: As vision-language models have generated
growing research interest, robustness work for cross-modal
domain has been actively studied [59, 50, 8]. Especially, in
visual question answering (VQA) task, diverse robustness-
evaluation benchmark [78, 28, 63, 26, 64, 51] has been
proposed. For example, VQA-Rephrasings [63] generated
dataset by rephrasing questions to evaluate the robustness in
the input question. Adversarial VQA [51] and AdVQA [64]
collected adversarial examples in human-in-the-loop man-
ner. However, to the best of our knowledge, this is the first
work to propose robustness-evaluation benchmark in ITM
task. We hope that our work can inspire the future research
to create more diverse stress-test benchmarks in ITM area.

3. Robustness-Evaluation Benchmark
Our goal is to quantitatively measure how well ITM

models understand both text and image. To this end, we add
new fooling images and captions to COCO 5K test set. To
effectively create confusing captions and images, we pay at-
tention to how ITM models retrieve texts and images from
a given query. ITM models [47, 10] find the most match-
ing pair through a similarity measure (e.g., cosine similar-
ity) between learned text embedding and image embedding.
Thus, our assumption is that a new caption or an image with
minimal changes to the original embedding will be able to
fool a model since its similarity score is likely to remain
similar. In the following sections, we describe the example-
pair generation process in detail.

3.1. Caption Generation for given Image

To generate a fooling caption, we create a sentence
whose meaning changes considerably, but whose embed-
ding does not change much from the existing embedding.
To this end, we replace one meaningful word in the sen-
tence. Substituting a word in a sentence is a commonly used
method for adversarial attacks in natural language process-
ing (NLP) [21, 75]. Unlike the previous methods replacing
a word with semantically similar words, we replace words
with completely different or unrelated words (e.g., “um-
brella”→ “gun”). If the model gets confused and retrieves
this new caption with different meaning as top 1, as in Fig-
ure 1, it is difficult to say that the model is robust. Through
this, it is possible to check if the model successfully learned
the alignment of image and text embedding by understand-
ing semantic details of the image.

3.1.1 Embedding-Influence for Source Word Selection

To substitute a word in a caption, we need to choose which
word (i.e., source word) to replace. First, in order to change
the meaning of the caption significantly, we restrict the

Figure 2: Influence of a word in a caption. The darker
the red color of a word, the greater its influence. For each
caption, the noun with the highest EI score is underlined
in red, and the noun with the lowest EI score is underlined
in gray. We can observe that some semantically important
nouns such as ‘man’ and ‘bathroom’ have low EI scores,
which can make a model not robust.

source words to noun. Among the nouns, we exclude the
words whose substitution would not considerably change
the meaning of the sentence. For example, from the cap-
tion, “A row of motorcycles parked in front of a building”,
we do not include the noun “row” in the source words, since
the replacement of “row” does not meaningfully change the
sentence.

Then, we need to select one word to change among
the meaningful source words (e.g., “motorcycles”, “front”,
“building” in the caption above). To change the meaning
of a caption with minimal changes to its embedding, we
propose embedding-influence (EI) score that can estimate
the influence of each word. EI sore measures the change
in embedding when the word is removed from the caption.
Changing a word with a low EI score will not show much
change in embedding compared to other words. Thus, simi-
lar embedding output is likely to maintain a high similarity
score and confuse a model.

To estimate the influence of each word, we measure the
change in embedding when the word is removed from the
caption. It is a classic technique in robust statistics to mea-
sure influence by estimating a change in prediction when a
sample is removed [41]. Given a text encoder fT , and a cap-
tion C = {cm |m = 1, · · · ,M} where M is the number of
words in C, the embedding-influence (EI) score of a word,
cs, can be defined by

EI(cs) = 1− < fT (C), fT (C \ cs) >
‖ fT (C) ‖‖ fT (C \ cs) ‖

, (1)

where<,> denotes the dot(inner) product operation. A low
EI score means that the embedding output of the caption
without the word is similar to the original caption. That is,
the deleted word has low influence to the embedding result
for the caption.

Figure 2 shows the example of different influences of
words in each caption. The darker the red color for a word,



(a) Consensus among models. (b) Source word distribution.

Figure 3: Statistics of source words selected by EI scores. (a) Consensus among models. x-axis indicates the number of
consensus models that pick the same word, y-axis the frequency of consensus for each case in x-axis over all captions. (b)
The source word distribution exhibits a long-tailed distribution.

the greater the influence of the word. For each caption, we
underline the noun with the highest EI score in red and
the noun with the lowest one in gray. Since a noun such
as “umbrella” (object) and “man” (subject) has seemingly
important meaning, the meaning of the sentence with the
noun(e.g., umbrella) replaced to another one (e.g., gun) can
be changed considerably.

However, the model can hardly recognize the change
when the noun (e.g. umbrella) has the lowest EI score that
does not much affect the embedding output, compared to
the noun (e.g. tram) with the highest EI score. This makes
the model still select the changed sentence as top-1, which
is a false matching. This provides our motivation that the
noun with the lowest EI score becomes a source word to be
replaced by a target word chosen according to the scheme
described in the next section. In experimental section, we
empirically verify the effectiveness of EI scores.

Because EI score of a word varies depending on a model,
we employ four different representative models in Table 1 to
measure EI score of a word. After gathering the word with
the lowest score in each model, we choose one word that
appear most frequently in the four models among the gath-
ered words, whereas if the most frequent word is not one,
the source word is randomly selected among the lowest-EI
words chosen by the models. Figure 3 represents the statis-
tics of source words selected based on the lowest EI scores
across four models. Figure 3(a) shows the frequency of con-
sensus among models: how many models pick the same
word for each caption, where x-axis indicates the number
of models that pick the same word, y-axis the frequency
of consensus for each case in x-axis over all captions. Sur-
prisingly, two or more models choose the same word in the
percentage more than 70% though the models are trained
using different architectures and datasets (e.g., pre-training
dataset). A similar phenomenon has also been observed in
image-only classifiers [57]. This implies that the currently

Table 1: Models used for calculating EI scores.

Model COCO-trained Text backbone

VSRN [49] Finetuned Bi-GRU [14]
CLIP [60] Zero-shot Transformer [68]
VSE∞ [10] Finetuned BERT [19]
BLIP [47] Finetuned BERT

Table 2: Added Concept Groups. We include new con-
cepts, which are not included in GRIT [31]. Table shows
added unique concepts and 3 random words from each
group.

concept group #concepts concept lemmas (sampled)

material 32 metal, plastic, wooden
color 28 black, white, brown
direction 50 front, middle, bottom
vehicle part 12 hood, wheel, tire
shape 15 round, square, octagon
event 11 Christmas, birthday, wedding
number 14 one, five, hundreds

proposed models have similar vulnerabilities against word-
level attacks in common. In experiment section, we suggest
necessity of new robust ITM models by various word-level
modifications.

3.1.2 Replacement with Target Word

Next, we need to decide a target word that replaces a se-
lected source word. To create various confusing captions,
we adopt three policies to generate new words.

First, we use concept groups from recently proposed
GRIT benchmark [31]. GRIT has grouped a large number
of nouns from popular computer vision datasets including
COCO into 24 concept groups (e.g., food, people, places,



Figure 4: Example of generated captions. (Left) Original COCO image and captions. (Right) Our generated captions, Rand-
voca, Same-concept, Diff-concept, and Danger from top to bottom. The model is to retrieve the most appropriate caption from
a pool of both original and newly generated captions. Our assumption is that the robust model should be able to retrieve the
original captions well without being confused by new captions with different meanings.

and so on). We add 7 concept groups (see Table 2) for words
that are hard to be included in the given concept groups.
Next, we categorize words according to the concept groups.
Then, a source word is randomly replaced by any target
word inside Same-concept or Diff-concept. For example,
Same-concept replaces “umbrella” with any word in the
same concept (i.e., tools), which can be “rope”, “boxes”,
and so on. Diff-concept replaces “umbrella” with any word
selected randomly from different concepts, such as “pizza”
from “food” concept, and “monkey” from “animal” con-
cept. We exclude cases when the meaning is not signifi-
cantly changed (e.g., “umbrella”→ “parasol”).

Second, we replace a source word with a target word
randomly selected from large-scale BERT [19] vocabulary
(Rand-voca). We use words consisting of only English let-
ters, excluding those in other languages or special charac-
ters. We also exclude cases when the meaning is not signif-
icantly changed.

Finally, as an example of a critical situation that can be
applied in practice, we create a special case (Danger), by
using words related to public security. For example, “um-
brella” is replaced by “gun” or “weapon”. Figure 4 shows
the examples of generated captions. We show more exam-
ples in the Supplementary material.

3.2. Image Generation

To create images that are perceptible to human but con-
fusing for models, we design a new image by mixing it with
a fake image. By using the mixed version of the original
image, we can bring minimal changes to the image embed-
ding. The practical use case is that malicious contents can be

Figure 5: Example of generated images with different λ.

inserted into normal images to confuse filtering algorithms
and make it searchable on websites. These images are more
challenging that the malicious image is hidden in the normal
image.

We mix two images in Mixup [76] (Mix) and Cut-
mix [74] (Patch) styles, respectively, as shown in Figure 5.
When inserting a fake image xf into an original image xo,
we test with different mixing ratios λ and M as in,

Mix : x̃ = λxo + (1− λ)xf

Patch : x̃ = M� xo + (1−M)� xf

where M ∈ {0, 1}W×H denotes a binary mask, where W
is the width and H is the height of the image. In Patch, λ is
calculated as λ =

∑
i,j Mi,j

W×H .



4. Experiments and Results
4.1. Experimental setting

In this section, we evaluate the existing image-text
matching (ITM) models on our new dataset. Since the pair
between newly created images and captions is not of our in-
terest, we calculate image-to-text scores between the origi-
nal 5,000 images and new 50,000 captions. On the contrary,
in the text-to-image task, 25,000 captions are to retrieve the
best image from a pool of 10,000 images.

4.1.1 Evaluation Metrics

Recall@k, especially Recall@1 (R@1), is the most popular
metric for evaluating the existing ITM methods. In this pa-
per, we propose two metrics to evaluate Drop Rate and False
Recall@1 (FR@1) in addition to R@1. Drop rate measures
how much R@1 has dropped when the models are tested on
the new retrieval pool, compared to the original COCO 5K
testset. We calculate drop rate as (R@1− RNew@1)/R@1.

False Recall@1 calculates the percentage that newly
added incorrect captions/images are retrieved as top 1. This
can quantitatively estimate the vulnerability of a model.

4.1.2 Models for Evaluation

We compare 14 state-of-the-art Vision-Language (VL)
models, whose trained weights are available to the public.
They can be categorized into two groups; large-scale vision-
language(VL) pre-training and visual semantic embedding
groups.Large-scale VL pre-training group includes CLIP
with ViT-B/32, ViT-B/16 and ViT/L14 backbones [60], fine-
tuned ALBEF [48], and zero-shot and fine-tuned BLIP
with ViT-B and ViT-L backbones [47]. While ‘zero-shot’
and ‘fine-tuned’ models are both pre-trained on large-scale
datasets, ‘zero-shot’ refers to not being fine-tuned with
COCO train set.

Visual semantic embedding group includes models us-
ing region features based on bottom-up attention [3] and
SCAN [44]: VSRN [49], SAF, SGR [20], and VSE∞ with
BUTD region [10]. Also, we evaluate on VSE∞ [10] with
BUTD grid and WSL grid. BUTD grid uses grid features
pretrained on ImageNet and Visual Genome [3]. WSL grid
is pre-trained on Instagram [56].

4.2. Main results

4.2.1 Image-to-Text Retrieval

Table 3 reports the image-to-text retrieval results on our new
datasets. All models show a significant performance drop
across the testsets. From the results, we have observed fol-
lowing points.

Data perspective. Evaluation on Rand-voca shows the
most performance degradation as can be seen from Ta-

ble. We conjecture that this is because Rand-voca includes
many unexpected words that do not commonly co-appear in
captions, whereas in Same-concept and Diff-concept, both
the source words and the target words belong to the same
dataset, COCO. The above observation means that mod-
els seem more vulnerable to sentences made up of unfa-
miliar combinations of words that have rarely appeared in
the trained captions. This conjecture questions the model’s
ability to understand the word-level meaning within the sen-
tence.

Model perspective. We expect Large-scale VL pre-
training models should be more robust since they are trained
on additional pre-training datasets (e.g., 400M image pairs
in CLIP [60], 129M in BLIP [47], 14M in ALBEF [48]).
However, the results of drop rate or false recall@1 do not
show superior robustness to the conventional Visual Seman-
tic Embedding models. We assume that since Large-scale
VL pre-training models learn multimodal representation by
minimizing the distance of the matched image-text pair (i.e.,
ITM loss), they could be vulnerable to a single-word change
in caption. Therefore, we argue that it is important to devise
a robust learning algorithm, such that the model can better
learn the word-level semantic meaning and its alignment to
images.
4.2.2 Text-to-Image Retrieval

We evaluate VL methods on new image set with λ =
0.9, 0.8 in Table 4. We have generated images with three
random seeds and report the averaged results. We can ob-
serve consistent degradation for all VL methods.

We display the examples of retrieving incorrect images
with BLIP ViT-B when λ = 0.8 in Figure 6. While human
would not prefer to mixed images to the original images,
we observe that models are easily confused two images. We
presume that models attend to specific region in an image
without understanding the whole context and details of im-
ages.

We believe that this is a simple but effective way to test
the model’s robustness. We show the results on more λ and
more visualization of images in Supplementary material.

Figure 6: Image retrieval examples.



Table 3: Image-to-Text retrieval results. Models are re-evaluated on four new benchmark datasets: Rand-voca, Same-
concept, Diff-concept, and Danger. Recall@1 (R@1)(↑), drop rate(↓), False Recall@1 (FR@1)(↓) are shown. We can see
consistent degradation across all vision-language models regardless of using pre-training datasets and different methods. The
biggest performance drops are marked in bold.

COCO 5K Rand-voca Same-concept Diff-concept Danger
R@1 R@1 drop rate FR@1 R@1 drop rate FR@1 R@1 drop rate FR@1 R@1 drop rate FR@1

Large-scale VL pre-training models
CLIP ViT-B/32 (zero-shot) [60] 50.10 36.44 27.27 34.63 35.77 28.60 36.64 37.48 25.18 32.27 42.18 15.81 19.69
CLIP ViT-B/16 (zero-shot) [60] 52.44 38.18 27.19 34.87 38.36 26.85 34.40 40.23 23.28 30.57 44.67 14.81 18.19
CLIP ViT-L/14 (zero-shot) [60] 56.04 39.90 28.81 33.95 40.90 27.02 34.86 42.66 23.88 24.07 46.48 17.06 30.16
ALBEF [48] 77.58 60.13 22.49 26.07 60.55 21.95 25.09 61.84 20.29 23.75 63.37 18.32 20.43
BLIP ViT-B (zero-shot) [47] 70.54 35.28 49.98 54.58 47.77 32.28 37.45 45.58 35.39 40.89 42.39 39.90 43.99
BLIP ViT-B [47] 81.90 64.50 21.25 23.72 68.74 16.07 18.74 69.20 15.51 17.36 67.81 17.21 18.92
BLIP ViT-L (zero-shot) [47] 73.66 45.96 37.60 40.49 55.38 24.82 28.27 55.69 24.39 27.56 55.93 24.07 26.54
BLIP ViT-L [47] 82.36 66.84 18.85 21.18 71.16 13.60 16.02 72.70 11.72 13.86 72.37 12.13 13.73

Visual Semantic Embedding models
VSRN [49] 52.66 42.22 19.82 22.14 44.56 15.38 18.06 46.12 12.41 14.47 46.78 11.17 12.77
SAF [20] 55.46 39.30 29.14 31.54 42.04 24.20 28.35 45.00 18.85 22.24 42.77 22.88 26.35
SGR [20] 57.22 41.69 27.14 30.43 43.61 23.79 28.02 46.56 18.63 22.07 44.90 21.53 24.72
VSE∞ (BUTD region) [10] 58.02 31.71 45.34 47.99 39.79 31.42 35.12 36.91 36.38 39.86 37.66 35.09 37.38
VSE∞ (BUTD grid) [10] 59.40 32.24 45.72 48.75 41.12 30.77 33.58 38.71 34.84 38.40 39.71 33.15 35.32
VSE∞ (WSL grid) [10] 66.06 37.54 43.17 46.07 48.76 26.19 29.59 44.86 32.09 35.06 45.39 31.29 33.07

Table 4: Text-to-Image retrieval. Models are evaluated with our new benchmark: Mix and Patch with different λ. Recall@1
(R@1)(↑), drop rate(↓), False Recall@1 (FR@1)(↓) are shown. The results are averaged over image generations with three
different random seeds. We can see consistent degradation across all vision-language models.

COCO 5K Mix (λ = 0.9) Mix (λ = 0.8) Patch (λ = 0.9) Patch (λ = 0.8)
R@1 R@1 drop rate FR@1 R@1 drop rate FR@1 R@1 drop rate FR@1 R@1 drop rate FR@1

Large-scale VL pre-training models
CLIP ViT-B/32 (zero-shot) [60] 30.14 20.29 32.68 33.55 22.79 24.39 26.03 22.49 25.38 28.63 24.15 19.87 23.69
CLIP ViT-B/16 (zero-shot) [60] 33.03 20.05 39.30 39.00 23.57 28.64 29.88 22.58 31.64 35.18 24.70 25.22 29.41
CLIP ViT-L/14 (zero-shot) [60] 36.14 25.49 29.47 28.99 27.75 23.22 24.29 27.56 23.74 27.64 29.09 19.51 23.97
ALBEF [48] 60.67 44.13 27.27 26.60 48.02 20.85 21.11 48.86 19.47 19.58 51.80 14.62 15.30
BLIP ViT-B (zero-shot) [47] 56.36 39.03 30.75 31.54 43.94 22.04 22.28 41.96 25.55 27.56 45.05 20.07 22.79
BLIP ViT-B [47] 64.31 40.71 36.70 39.93 46.97 26.96 30.84 48.40 24.74 42.57 52.61 18.19 21.45
BLIP ViT-L (zero-shot) [47] 58.18 44.29 23.87 25.13 47.61 18.17 19.96 46.79 19.58 21.07 49.50 14.93 16.50
BLIP ViT-L [47] 65.06 41.87 35.64 42.45 48.92 24.81 33.91 48.55 25.38 29.17 49.50 23.92 22.10

Visual Semantic Embedding models
VSRN [49] 40.34 27.04 32.97 39.05 31.36 22.26 28.87 30.08 25.43 31.11 32.50 19.43 24.80
SAF [20] 40.11 30.90 22.96 27.84 33.37 16.80 22.87 32.50 18.97 23.78 34.03 15.16 19.69
SGR [20] 40.45 30.71 24.08 28.08 33.41 17.40 22.57 32.40 19.90 23.95 34.08 15.75 19.90
VSE∞ (BUTD region) [10] 42.46 31.57 25.65 30.74 35.61 16.13 20.45 34.17 19.52 23.51 36.48 14.08 17.28
VSE∞ (BUTD grid) [10] 44.07 30.22 31.43 36.68 35.26 19.99 25.00 35.70 18.99 23.52 38.75 12.07 15.82
VSE∞ (WSL grid) [10] 51.55 34.31 33.44 38.60 40.40 21.63 26.26 43.67 15.29 18.39 46.87 9.08 11.31

4.3. Ablation studies

4.3.1 Effects of EI scores

To verify our word selection with embedding-influence (EI)
scores, we analyze the effects of using different methods:
Random, High EI scores, Low EI scores. Random refers to
randomly select a noun, and Large EI selects a noun with
the largest EI score. To offset the effect of the changed word
(i.e., target word), we construct new captions by deleting the
source word, without replacement.

As shown in Table 5, low EI word deletion is the most
effective way to fool models. On the other hand, High EI
word deletion shows limited performance drops. This veri-
fies our assumption that exploiting the word’s influence on
embedding feature can effectively confuse models. We be-
lieve manipulating words with low EI scores can be one ef-

fective way to test robustness of newly trained models.

4.3.2 Substituting more words

To further analyze the vulnerability of the VL models, we
conduct experiments by replacing multiple words. We won-
der if the model would confuse even when the original se-
mantic meaning is more broken. Thus, we randomly select
between 2 and 5 words and substitute them with words in
Bert vocabulary. Since many captions are not long, words
are not limited to nouns and are randomly selected.

We show the results in Table 6. Although it is presumed
to be an easy task, meaningful performance degradation oc-
curs in the entire model when multiple words are changed.
When more than two words are substituted, large-scale VL
pre-training models show more robust performance com-



Table 5: Effects of using EI scores. Deleting a source word with the lowest EI score shows the largest performance drop.

COCO Random Deletion High EI Deletion Low EI Deletion
R@1(↑) R@1(↑) drop rate(↓) FR@1(↓) R@1(↑) drop rate(↓) FR@1(↓) R@1(↑) drop rate(↓) FR@1(↓)

CLIP ViT-B/32 (zero-shot) [60] 50.10 38.58 22.99 29.66 42.76 14.65 21.84 36.04 28.06 32.30
CLIP ViT-L/14 (zero-shot) [60] 56.04 42.54 24.09 30.4 48.58 13.31 20.42 39.22 30.01 33.74
BLIP ViT-B (zero-shot) [47] 70.54 45.58 35.38 40.54 57.14 19.00 25.80 36.34 48.48 52.48
BLIP ViT-B [47] 81.90 65.54 22.46 19.98 72.74 11.18 14.06 59.28 27.62 30.10
VSRN [49] 52.66 44.7 15.12 18.02 43.46 17.47 22.56 38.56 26.78 29.36
VSE∞ (BUTD region) [10] 58.02 34.2 41.05 45.58 40.58 30.06 38.06 30.02 48.26 50.72
VSE∞ (BUTD grid) [10] 59.40 34.3 42.26 46.46 39.92 32.79 39.78 30.46 48.72 51.54
VSE∞ (WSL grid) [10] 66.06 40.8 38.24 41.68 47.32 28.37 33.76 36.56 44.66 47.14

Figure 7: Example of substituting multiple random words. We further break the semantic meaning of the caption by
randomly replacing four words. The examples show the cases that wrong captions are retrieved as top 1, evaluated with
BLIP (ViT-B) [47]. We discover that the model could be confused by these nonsensical sentences, that human would not be
confused with. We assume that the model is likely to pay more attention to specific words (e.g., “motorcycle” in the first
image) than to understanding the language.

Table 6: Image-to-Text retrieval on dataset with multiple words substitutions. We generate captions by randomly re-
placing more words and add to COCO test set. The results are averaged over generations with three different random seeds.
Recall@1 (R@1)(↑), drop rate(↓), False Recall@1 (FR@1)(↓) are shown. Models can confuse sentences even when the
semantic meaning is more largely damaged.

COCO 2 words substitution 3 words substitution 4 words substitution 5 words substitution
R@1 R@1 drop rate FR@1 R@1 drop rate FR@1 R@1 drop rate FR@1 R@1 drop rate FR@1

Large-scale VL pre-training models
CLIP ViT-B/32 (zero-shot) [60] 50.10 42.89 14.39 19.71 46.07 8.04 12.67 47.45 5.29 8.15 48.37 3.45 5.46
CLIP ViT-B/16 (zero-shot) [60] 52.44 45.35 13.52 19.07 48.43 7.65 11.89 49.97 4.71 8.01 50.61 3.49 5.95
CLIP ViT-L/14 (zero-shot) [60] 56.04 47.35 15.51 22.18 50.22 10.39 15.78 51.99 7.23 11.56 53.07 5.30 8.27
ALBEF [48] 77.58 72.43 6.64 2.40 73.03 5.86 0.88 73.23 5.61 0.43 73.26 5.57 0.32
BLIP ViT-B (zero-shot) [47] 70.54 53.04 24.81 30.75 62.99 10.70 14.72 67.95 3.67 5.44 69.73 1.15 1.86
BLIP ViT-B [47] 81.90 73.62 10.11 12.76 77.45 5.43 7.10 79.54 2.88 4.05 80.48 1.73 2.51
BLIP ViT-L (zero-shot) [47] 73.66 60.35 18.07 21.66 67.99 7.70 10.16 71.63 2.76 3.93 72.87 1.07 1.61
BLIP ViT-L [47] 82.36 73.93 10.24 12.65 77.93 5.38 7.45 79.81 3.10 4.23 80.98 1.68 2.54
Visual Semantic Embedding models
VSRN [49] 52.66 45.07 14.41 17.79 47.89 9.06 11.33 49.89 5.26 7.08 50.99 3.17 4.29
SAF [20] 55.46 44.06 20.56 20.29 47.22 14.86 26.71 50.02 9.81 15.12 51.71 6.76 10.85
SGR [20] 57.22 43.57 23.86 28.53 46.98 17.90 22.79 49.81 12.95 17.49 51.91 9.28 13.09
VSE∞ (BUTD region) [10] 58.02 33.94 41.50 46.81 37.15 35.98 42.66 40.39 30.39 37.79 43.17 25.60 33.01
VSE∞ (BUTD grid) [10] 59.40 34.79 41.44 45.95 38.03 35.98 41.75 41.17 30.68 37.14 44.97 24.30 30.57
VSE∞ (WSL grid) [10] 66.06 39.95 39.52 43.79 44.04 33.33 38.44 48.29 26.90 32.85 51.73 21.69 27.51

pared to VSE models. Especially, VSE∞ shows the vulner-
ability even for captions with 5 words changed. We think
that VSE∞’s simple pooling operator can be overfitted to
COCO dataset.

Meanwhile, Figure 7 displays the examples of newly cre-
ated captions which BLIP (ViT-B) has retrieved as top 1.

The figure shows the results when four words are replaced.
We observe that Top 1 retrieved caption includes at least
one correct key word, such as “motorcyclist” in the first im-
age. These results lead us to suspect that the model seems
to be paying more attention to certain words than whole
sentences. We include the examples of substituting two and



three words in Supplementary Material.

5. Conclusion
In this paper, we propose a robust-evaluation benchmark

that can measure the robustness of image-text matching
(ITM) models. To the best of our knowledge, it is the first
benchmark to test robustness in image-text matching task.
Unlike existing studies for the robustness test in computer
vision and natural language processing (NLP) area, which
generate semantic-preserving texts and images with imper-
ceptible changes, we propose a strategy in the opposite di-
rection to the existing adversarial attack strategy. Our main
idea is to create fooling captions and images by minimal
changes in embedding feature. From evaluation on various
state-of-the-art vision language (VL) models, we discover
that both models with and without large-scale pre-training
data show significant performance degradation and retrieve
the incorrect caption/image at a high rate. Our empirical re-
sults raise up necessity of new robust ITM models and our
benchmark dataset could promote further robustness studies
in ITM task.

Limitations. In the process of randomly replacing
words, some unnatural sentences such as “A war on bicycle
riding next to a train (man → war)” are created. However,
these sentences do not violate our intention to test how well
the ITM model understands both visual and semantic mean-
ing. Creating benchmarks is a very challenging but impor-
tant study that can boost improvements of the existing al-
gorithms. We hope that our study can inspire researchers in
ITM task and more robustness benchmarks can be created.

Supplementary Material
F. Text-to-Image Retrieval

We report the results on new image set with λ = 0.7, 0.6
in Table 7. We can still observe meaningful performance
drop, when the added images are more significantly per-
turbed that seemed less confusing. In most cases, False Re-
call@1 exceeded 10%. In BLIP [47], performance degrada-
tion occurred more in fine-tuned models than in zero-shot
models. We conjecture that this is because the models over-
fitted to COCO dataset during finetuning. We display the
examples of retrieving incorrect images with BLIP ViT-B
when λ = 0.6, 0.7 in Figure 8.

G. Substituting more words
Figure 9 shows examples of newly added captions that

BLIP ViT-B model has retrieved as top 1. While the created
captions are not natural, they include some keywords. Thus,
we can conclude that the model is focusing on some nouns
rather than the whole sentence.



Table 7: Text-to-Image retrieval. Models are evaluated with our new benchmark: Mix and Patch with different λ. Recall@1
(R@1)(↑), drop rate(↓), False Recall@1 (FR@1)(↓) are shown. The results are averaged over image generations with three
different random seeds. We can see consistent degradation across all vision-language models.

COCO 5K Mix (λ = 0.7) Mix (λ = 0.6) Patch (λ = 0.7) Patch (λ = 0.6)
R@1 R@1 drop rate FR@1 R@1 drop rate FR@1 R@1 drop rate FR@1 R@1 drop rate FR@1

Large-scale VL pre-training models
CLIP ViT-B/32 (zero-shot) [60] 30.14 25.24 16.25 19.16 26.87 10.84 14.34 25.18 16.45 20.27 25.96 13.86 17.97
CLIP ViT-B/16 (zero-shot) [60] 33.03 26.60 19.46 22.48 28.67 13.19 16.90 26.14 20.85 25.64 27.12 17.88 22.76
CLIP ViT-L/14 (zero-shot) [60] 36.14 30.45 15.75 18.59 32.01 11.43 15.17 30.33 16.08 21.16 30.96 14.34 19.30
ALBEF [48] 60.67 52.53 13.42 14.44 55.91 7.85 9.19 53.71 11.47 12.54 54.75 9.76 10.92
BLIP ViT-B (zero-shot) [47] 56.36 48.12 14.62 16.52 50.81 9.85 11.70 46.97 16.66 18.74 48.38 14.16 16.33
BLIP ViT-B [47] 64.31 53.56 16.72 20.15 57.77 10.18 13.45 55.20 14.17 16.79 56.68 11.87 14.82
BLIP ViT-L (zero-shot) [47] 58.18 51.21 11.98 13.82 53.69 7.71 9.38 51.05 12.25 13.96 52.28 10.14 11.95
BLIP ViT-L [47] 65.06 52.06 19.98 24.43 57.08 12.27 16.19 55.58 14.57 18.05 57.19 12.10 15.41

Visual Semantic Embedding models
VSRN [49] 40.34 34.80 13.72 19.24 37.04 8.17 12.69 34.01 15.68 21.31 34.99 13.25 18.59
SAF [20] 40.11 35.55 11.37 16.57 36.91 7.98 12.32 35.22 12.20 16.81 35.75 10.87 15.24
SGR [20] 40.45 35.59 12.01 16.54 37.23 7.96 11.96 35.23 12.90 17.12 35.85 11.37 15.53
VSE (BUTD region) [10] 42.46 38.74 8.76 11.99 40.38 4.90 7.20 38.18 10.08 13.57 38.99 8.17 11.42
VSE (BUTD grid) [10] 44.07 39.01 11.47 15.39 41.22 6.46 9.26 40.10 9.00 12.12 40.94 7.09 9.94
VSE (WSL grid) [10] 51.55 45.13 12.46 15.70 47.97 6.95 9.30 48.37 6.17 8.02 48.93 5.08 6.58



(a) λ = 0.6

(b) λ = 0.7

Figure 8: Image retrieval examples.



(a) Two words substitution

(b) Three words substitution

(c) Five words substitution

Figure 9: Example of substituting multiple random words.
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