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Abstract

We need billion-scale images to achieve more general-
izable and ground-breaking vision models, as well as mas-
sive dataset storage to ship the images (e.g., the LAION-
5B dataset needs 240TB storage space). However, it has
become challenging to deal with unlimited dataset storage
with limited storage infrastructure. A number of storage-
efficient training methods have been proposed to tackle
the problem, but they are rarely scalable or suffer from
severe damage to performance. In this paper, we pro-
pose a storage-efficient training strategy for vision clas-
sifiers for large-scale datasets (e.g., ImageNet) that only
uses 1024 tokens per instance without using the raw level
pixels; our token storage only needs <1% of the original
JPEG-compressed raw pixels. We also propose token aug-
mentations and a Stem-adaptor module to make our ap-
proach able to use the same architecture as pixel-based ap-
proaches with only minimal modifications on the stem layer
and the carefully tuned optimization settings. Our exper-
imental results on ImageNet-1k show that our method sig-
nificantly outperforms other storage-efficient training meth-
ods with a large gap. We further show the effectiveness of
our method in other practical scenarios, storage-efficient
pre-training, and continual learning. Code is available at
https://github.com/naver-ai/seit

1. Introduction
We need billion-scale data points for more generaliz-

able and ground-breaking vision models, e.g., 400M image-
text pairs [49], 1.8B image-text pairs [31], or 3.6B weakly-
annotated images [43, 60]. However, designing and op-
erating a high-performance but fault-tolerant generic dis-
tributed dataset is a very expensive and challenging prob-
lem [75]. This problem has become more challenging for
vision datasets compared to language datasets. For exam-
ple, training GPT-2 with 8M documents only need 40GB of
storage [50], while the larger GPT-3 is trained with 410B to-
kens with 570GB of storage [11]. On the other hand, storing
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Figure 1. Training data storage vs. ImageNet 1k Accuracy.
Comparisons on ImageNet-1k [55] using ViT-B/16 backbone [20]
are shown. Our SeiT (red lines) significantly outperforms other
storage-efficient methods with the same storage size, achieving
74.0% and 78.4% top-1 acc with only 1.36GB utilizing tokeniz-
ers trained with ImageNet-1k and OpenImages, respectively. Note
that the original pixel-based image storage requires 140GB of stor-
age to achieve 81.8% top-1 accuracy. Details are in Table B.5.

images requires significantly more storage space than stor-
ing language. For example, the ImageNet-21k dataset [55]
with 11M images requires a 1.4TB storage size, 2.5 times
larger than GPT-3 storage despite containing fewer data
points. Larger-scale datasets for large-scale pre-training re-
quire even more massive storage, e.g., 240TB for 5B images
[57]. Consequently, storage remains a major bottleneck in
scaling up vision models compared to language models.

Why do images require a large storage size than text?
This is because while the nature of language is discrete, im-
ages are continuous in nature. Also, while the text quality is
independent of document length, the image quality directly
affects the storage size; better quality images require larger
storage sizes. Although a lossy JPEG compression can re-
duce the storage size, as witnessed by Rombach et al., still
“most bits of a digital image corresponds to imperceptible
details” [53]. Such imperceptible details (e.g., fine-grained
details or high-frequency information of images) could be
unnecessary for our desired vision classifiers. However,
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deep vision models are vulnerable to imperceptible high-
frequency perturbations [23, 42, 17] or unreasonably local
areas [22, 6, 59], implying that deep vision models attend
too much to imperceptible details instead of the true prop-
erty of objects. Therefore, we can expect that we can still
achieve a high-performing vision model with the reduced
image dataset by removing the imperceptible details.

There are two major directions to storage-efficient vision
model training. The first direction aims to reduce the total
number of data points by discarding less important samples
[45, 47, 32] or synthesizing more “condensed” images than
natural images [78, 77]. However, this approach shows a
significant performance drop compared to the full dataset
(the blue and yellow lines in Fig. 1) or cannot be applied
to large-scale datasets due to their high complexity. Also,
as the sampled or synthesized images are still normal im-
ages, these methods still suffer from an inefficient compres-
sion ratio to express imperceptible details. Furthermore,
these methods need to compute the importance score or the
sample-wise gradient of each sample by learning models
with the full dataset. It makes these approaches not appli-
cable to unseen datasets or newly upcoming data streams.

The other approach involves reducing the size of each
image while keeping the total number of images. For ex-
ample, by learning a more efficient compression method
[7, 8]. However, the neural compression methods have been
mostly studied on extremely small-scale datasets (e.g., 24
images [15] or 100 images [4]), and their generalizability
to large-scale datasets is still an open problem. Moreover,
the goal of neural compression is to compress an image and
recover the original image as perfectly as possible, not to
extract the most discriminant features for object recognition
tasks. In response to these limitations, no neural compres-
sion method has been used to compress large-scale datasets
like ImageNet [55] to train deep vision models.

Due to the difficulty of the practical usage of neural com-
pression, practitioners have attempted to reduce storage us-
age by controlling image quality. For example, the LAION
dataset [58, 57] stores each image at 256 × 256 resolution,
which takes up only 36% of ImageNet images (469 × 387
resolution on average). Similarly, adjusting the JPEG com-
pression quality can reduce the overall storage. As shown in
Fig. 1 (green and purple lines), these approaches work well
in practice compared to sampling-based methods. How-
ever, these methods have a limited compression ratio; if the
compression ratio becomes less than 25%, the performances
drop significantly. By adjusting the image resolution with
a 4% compression ratio and JPEG quality with a 7% com-
pression ratio, we achieve 63.3% and 67.8% top-1 accura-
cies, respectively. In contrast, our approach achieves 74.0%
top-1 accuracy with only a 1% compression ratio.

All shortcomings of the previous methods originate from
the fact that too many imperceptible bits are assigned to

store a digital image, which is misaligned with our target
task. Our approach overcomes this limitation by storing
images as tokens rather than pixels, using pre-trained vision
tokenizers, such as VQGAN [21] or ViT-VQGAN tokenizer
[72]. Introducing Storage-efficient Vision Training (SeiT),
we convert each image to 32 × 32 tokens. The number of
possible cases each token can have (the codebook) is 391,
which takes only 1.15KB to store each token (assuming that
the number of 391 cases can be expressed in 9 bits). It costs
only less than 1.5GB for storing 140GB pixel-based storage
of ImageNet. We train Vision Transformer (ViT) models on
our tokenized images with minimum modifications. First, a
1024-length tokenized image is converted to a 32× 32× 32
tensor by using pre-trained 32-dimensional codebook vec-
tors from ViT-VQGAN. Next, we apply random resized
crop (RRC) to the tensor to get a 32×28×28 tensor. Then,
to convert the tensor into a form that ViT can handle, we
introduce Stem-Adapter module that converts the RRC-ed
tensor into a tensor of size 768×14×14, the same as the first
layer input of ViT after the stem layer. Because the image-
based augmentations are not directly applicable to tokens,
we propose simple token-specific augmentations, including
Token-EDA (inspired from easy data augmentation (EDA)
[71] for language), Emb-Noise and Token-CutMix (inspired
from CutMix [73]). In our experiment, we achieve 74.0%
top-1 accuracy with 1.36GB token storage, where the full
image storage requires 140GB to achieve 81.8% [65].

SeiT has several advantages over previous storage-
efficient methods. First, as we use a frozen pre-trained to-
kenizer that only requires forward operations to extract to-
kens from images, we do not need an additional optimiza-
tion for compressing a dataset, such as importance score-
based sampling [32], image synthesis methods [78, 77], or
neural compression [7, 8]. Hence, SeiT is easily applica-
ble to newly upcoming data streams directly. Second, un-
like previous works that use pre-trained feature extractors
(e.g., HOG [19] or Faster-RCNN [51, 2]), SeiT can use the
same architecture as pixel-based approaches with only min-
imal modifications on the stem layer, as well as the carefully
tuned optimization settings, such as DeiT [65]. It becomes a
huge advantage when using SeiT as an efficient pre-training
method; we can achieve 82.6% top-1 accuracy by fine-
tuning the token pre-trained model with images. Moreover,
applying an input augmentation for feature extractor-based
approaches is not straightforward, limiting their generaliz-
ability. Finally, SeiT shows a significant compression ratio,
with a 1% compression ratio for ImageNet.

We show the effectiveness of SeiT on three image classi-
fication scenarios: (1) storage-efficient ImageNet-1k bench-
mark (2) storage-efficient large-scale pre-training, and (3)
continual learning. The overview of storage-efficient results
is shown in Fig. 1: SeiT outperforms comparison methods
with a significant gap with the same storage size, 74.0% ac-



curacy on ImageNet under 1% of the original storage, where
comparison methods need 40% (uniform sampling, C-score
sampling [32]), 6% (adjusting image resolution), and 8%
(adjusting JPEG quality) of the original storage to achieve
the similar performance. We also demonstrate that SeiT can
be applied to large-scale pre-training for an image-based ap-
proach; we pre-train a ViT-B/16 model on the tokenized
ImageNet-21k (occupying only 14.1GB) and fine-tune the
ViT model on the full-pixel ImageNet-1k. By using slightly
more storage (156GB vs. 140GB), our storage-efficient pre-
training strategy shows 82.8% top-1 accuracy, whereas the
full-pixel ImageNet-1k training shows 81.8%. Finally, we
observe that our token-based approach significantly outper-
forms the image-based counterpart in the continual learning
scenario [52] by storing more data samples in the same size
of the memory compared to full-pixel images.

Contributions. (1) We compress an image to 1024 dis-
crete tokens using a pre-trained visual tokenizer. By ap-
plying a simple lossless compression for the tokens, we
achieve only 0.97% storage size compared to images stored
in pixels. (2) We propose Stem-Adapter module and aug-
mentation methods for tokens such as Token-RRC, Token-
CutMix, Emb-Noise, and Token-EDA in order to enable
ViT training with minimal change to the protocol and hy-
perparameters of existing ViT training. (3) Our storage-
efficient training pipeline named Storage-efficient Vision
Training (SeiT) shows great improvements on the low-
storage regime. With only 1% storage size, SeiT achieves
74.0% top-1 ImageNet 1k validation accuracy. (4) We addi-
tionally show that SeiT can be applied to a storage-efficient
pre-training strategy, and continual learning tasks.

2. Related Works
Importance sampling for efficient training. Sampling-
based methods [45, 47, 14, 32] aims to idendity a compact,
yet representative subset of the training dataset that satisfies
the original objectives for efficient model training. This is
usually achieved through exploring the early training stage
[47], constructing a proxy model [14], or utilizing consis-
tency score (C-score) [32]. However, the empirical perfor-
mance gap between sampling-based methods and the base-
line approach of random selection is insignificant, particu-
larly in large-scale datasets like ImageNet-1k (See Fig. 1).
We believe that preserving the diversity of data points in a
dataset is crucial, and therefore we endeavor to maintain the
number of data points instead of pruning them.

Dataset distillation. Dataset distillation [70] aims to gen-
erate a compact dataset by transferring the knowledge of
the training dataset into a smaller dataset. Recent works
[78, 77, 38, 56, 54] have shown that the synthesized data can

be effective in efficient model training, especially in scenar-
ios such as continual learning [52]. However, due to their
high complexity, they have not yet demonstrated success-
ful cases in large-scale datasets such as ImageNet-1k. We
recommend the survey paper [39] for curious readers.

Neural compression. Image compression algorithms
have improved with the use of neural network training to
minimize quality loss on lossy compression. The repre-
sentative learned image compression methods are based on
VAE [7, 8]. The compressor encodes an image to discrete
latent codes and the codes can be decoded into the image
with small losses. Recent studies [12, 33] have utilized
the self-attention mechanism [68] with heavy CNN archi-
tectures to demonstrate superior compression power com-
pared to conventional methods such as JPEG. However,
the learned image compression targets high-quality images
with complex and detailed contexts, which are distant from
ImageNet samples. Thus, it is challenging to apply these
methods to compress ImageNet for ViT training.

Learning with frozen pre-extracted features. Using ex-
tracted visual features for a model has been widely used in
the computer vision field. It shows reasonable performances
with a low computational cost compared to pixel-based vi-
sual encoders. For example, the Youtube-8M [1] dataset
consists of frame features extracted from Inception [61] in-
stead of raw pixels, allowing efficient video model train-
ing [44, 10] with frozen frame features. The pre-extracted
features have also been widely used for tasks that need
higher knowledge than pixel-level understandings. For ex-
ample, frozen CNN features [40] or bottom-up and top-
down (BUTD) [63, 2] features [34] have been a popular
choice for vision-and-language models that aim to under-
stand complex fused knowledge between two modalities,
e.g., visual question answering [3, 24]. These approaches
show slightly worse performances than the end-to-end train-
ing from raw inputs without pre-extracted features [35, 49],
but show high training efficiency in terms of computations.

However, these methods need feature-specific modules
to handle frozen features and specialized optimization tech-
niques rather than standard optimization methods of pixel-
based methods. Furthermore, some fundamental augmenta-
tions, such as random resized crop (RRC), are not applica-
ble to the frozen features, resulting in inferior generalizabil-
ity. SeiT has major advantages over these methods where it
is the almost same training method for ViT (e.g., DeiT [65]),
and yet it can significantly reduce the storage space.

3. Token-based Storage-Efficient Training
In this section, we propose Storage-efficient Vision

Training (SeiT). SeiT aims to learn a high-performing vi-
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Figure 2. Tokenization. The input image is resized to 256 × 256
and then divided into non-overlapping n2 patches. The patches
are fed into the ViT-VQGAN encoder, which produces a sequence
of dc dimensional vectors from the patches. Finally, the tokens
are generated by mapping each vector to the nearest code in a pre-
trained codebook. We used 32 for both n and dc in this paper.

sion classifier at scale (e.g., ImageNet-1k [55]) with a small
storage size (e.g., under 1% of the original size), a minimal
change on the training strategy (e.g., highly optimized train-
ing strategy [65]), and the minimum sacrifice of accuracies.
SeiT consists of two parts (1) preparing the compressed to-
ken dataset and (2) training a model using the tokens.

3.1. Preparing the token dataset

We extract tokens using the ImageNet-trained ViT-
VQGAN tokenizer [72] because it shows the best recon-
struction quality among the ImageNet-1k only trained tok-
enizers (See Appendix). In Fig. 1 and Appendix, our ap-
proach performs better if a stronger tokenizer trained with
an extra dataset, e.g., the OpenImages-trained VQGAN to-
kenizer [21], is used. In the main paper, however, we use
the ViT-VQGAN tokenizer for a fair comparison with other
storage-efficient methods in terms of the training dataset.

Fig. 2 shows the overview of the dataset preparation
pipeline. We first resize the entire ImageNet dataset to
256 × 256. Then, each resized image is divided into non-
overlapping 8 × 8 image patches. Finally, we encode each
patch into a 32-dimensional vector and assign a code in-
dex by finding the nearest codeword from the pre-trained
codebook. Here, we only use 391 codewords from the 8192
original codewords because we found that only 391 code-
words are used for the ImageNet training dataset. As a re-
sult, each image is converted to 32 × 32 tokens where each
token belongs to [0, . . ., 390]. We also store the codebook
of ViT-VQGAN (a 32 × 391 vector) to re-use the knowl-
edge of the codebook for better performance.

In theory, as our token indices belong to [0-390], the op-
timal bit length to store the tokens is log2 391 = 8.611 by
the source coding theorem [16]. Therefore, the optimal stor-
age size of an image will be 1.08 kB2. However, in practice,

1Following the empirical population of the tokens, the “empirical” op-
timal bit length is 8.54 by computing H(p) = −

∑
pi log pi. However,

in the rest of the paper, we assume the population is uniform for simplicity.
2We have 1.08 kB = bits per token (8.61) × token length (1024) / bits

Format Encoding
Storage

size
Avg. size
per image

Pixels uint8 (uncompressed) 1471.2 GB 1.14 MB
Pixels JPEG (baseline) 140.0 GB 109.3 kB
Tokens uint16 (uncompressed) 2.50 GB 2.0 kB
Tokens Ours (8 bits encoding) 1.54 GB 1.26 kB
Tokens Ours + Huffman coding 1.36 GB 1.11 kB

Tokens Theoretical optimum 1.32 GB 1.08 kB

Table 1. Storage size of the ImageNet-1k training dataset for
different formats and encodings. uint8 and uint16 denote
uncompressed version of each data format. Theoretical optimum
is estimated by assuming the token population is uniform.

we cannot store tokens in 8.61 bits because the commonly
used data types use Byte for the minimal unit, e.g., 1 Byte
(uint8) or 2 Bytes (uint16). To compress the required
bits per token to less than 2 Bytes, we propose a simple
yet efficient encoding for the tokens. First, we assign each
token index following the token popularity, i.e., the most
frequent token is assigned to index 0, and the least frequent
token is assigned to index 390. Then, we break up token
indices larger than 255 into two elements as follows:

i =

{
[i] if i < 255

[255, i] if i ≥ 255
(1)

We store multiple tokens in a file to reduce the required stor-
age as small as possible. However, because our encoding
process makes the length of each token variable, the naive
decoding process for our encoding will need O(n) com-
plexity where n is the number of encoded tokens by Eq. (1).
We solve the problem by simply storing the start indices of
each image. The index storage only requires 9.8 MB for the
entire ImageNet training dataset, but it makes the decoding
process becomes O(1) and parallelizable. Pseudo-codes for
the proposed encoding-decoding are in Appendix A.1.

Our simple encoding strategy reduces 40% of the over-
all storage size compared to the naive uint16 data type
as shown in Table 1. Here, as the original baseline storage
also employs a compression algorithm, such as JPEG (See
the first and the second row of Table 1), we also apply a
simple compression algorithm, Huffman coding [29]. After
applying Huffman coding to our token storage, we achieve
nearly optimal storage size per image (1.11 kB vs. 1.08 kB).
We empirically observe that the entire decoding process, in-
cluding Huffman decoding, is almost neglectable: while the
full-pixel processing requires 0.84s per 100 images, our ap-
proach only needs 0.07s. As a result, full-pixel and SeiT
take 5m 40s and 5m 12s for 1 epoch training, respectively.
In the remaining part of this paper, we use the compressed
version of our token dataset if there is no specification.

per Byte (8). If we follow the actual distribution, it becomes 1.07 kB.
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3.2. Training classifiers with tokens

Training a classifier with tokenized images is not trivial.
For example, an input token has 32 × 32 dimensions, but
a conventional image input has 3 × 224 × 224. Further-
more, strong image-level augmentations (e.g., RandAug-
ment [18], Gaussian blur [66]) have become crucial in large-
scale vision classifiers, however, these operations cannot be
directly applied to the tokens. One possible direction is to
decode tokens to pixel-level images during every forward
computation. However, this would impose an additional
computational load on the network. Instead, we propose
simple yet effective token-level augmentations and a simple
Stem-Adapter module to train a vision classifier directly on
the tokens with minimal modification but small sacrifices.

3.2.1 Token Augmentations

Token-EDA. We utilize the EDA [71], designed for lan-
guage models, to augment our token data. EDA originally
involves four methods: Synonym Replacement (SR), Ran-
dom Insertion (RI), Random Swap (RS), and Random Dele-
tion (RD). However, we only adopt SR and RS because the
others do not maintain the number of tokens, which is not
compatible with the ViT training strategy. For SR, we define
synonyms of a token as the five tokens that have the clos-
est Euclidean distance in the ViT-VQGAN codebook space.
Then, each token is randomly replaced with one of its syn-
onyms with a certain probability ps during training. For RS,
we randomly select two same-sized squares from a 32 × 32
token and swapped the tokens inside them with each other,
with a probability pr. We use 0.25 for ps and pr for SeiT.
Token-RRC and Token-CutMix. In addition to EDA, we
apply Random Resized Crop (RRC) and CutMix [73] to to-
kens. For RRC, we adopt a standard ImageNet configura-
tion with a scale (0.08, 1) and an aspect ratio (3/4, 4/3). To
enable interpolation, we first convert the original 32 × 32
tokens to one-hot form. Then, apply the random cropping
to these one-hot tokens, which are subsequently resized to

28 × 28 using bicubic interpolation. After RRC, the one-
hot tokens are converted to a 32 × 28 × 28 tensor using the
pre-trained codebook vectors from ViT-VQGAN, where 32
is the size of a pre-trained code vector. Note that tokens that
are not in one-hot form due to interpolation are converted to
mixed codebooks following their values. CutMix is then ap-
plied to these tensors, whereby a patch is randomly selected
from one token and replaced with a patch from another to-
ken while maintaining the channel dimension.
Adding channel-wise noise. We also developed Emb-
Noise, a token augmentation method that mimics color-
changing image augmentations, such as color jittering. In-
spired by the fact that each channel in an image represents
a specific color, we first generate noise of length 32 and add
it to each channel of the converted tensor with 32 × 28 ×
28 dims, and then apply full-size iid noise, i.e. noise size
of 32 × 28 × 28, to the tensor. All of the noise is sampled
from a normal distribution. We have empirically demon-
strated that this method brings significant performance im-
provement despite its simplicity. Moreover, we found that
adding channel-wise noise to the tokens in ViT-VQGAN,
the tokenizer we used, effectively changes the colors of the
decoded images, unlike adding Gaussian noise in entire di-
mensions. Example decoded images by ViT-VQGAN are
presented in Appendix A.2.

3.2.2 Stem-Adapter module

As the tokens have a smaller size than images, they cannot
be directly used for input of networks. We introduce a Stem-
Adapter that converts the augmented tensor into ViT/16 to
make minimal modifications on the network. Specifically,
the Stem-Adapter module converts the 32 × 28 × 28 pre-
processed tokens into 768 × 14 × 14, the same as the input
of transformer blocks of ViT after the stem layer. We im-
plement the Stem-Adapter module as a convolutional layer
with a kernel size of 4 and a stride of 2. This allows the
module to capture the spatial relationships of adjacent to-



Method
Reduction

factor
Dataset

storage size
# of images

Avg. size
per image

Top1 Acc.

Full-pixels 100% 140.0 GB 1,281 k 109 kB 81.8

Uniform random sampling
70% 95.7 GB 897 k 107 kB 78.2
40% 54.6 GB 512 k 107 kB 74.0
20% 27.2 GB 256 k 107 kB 59.8

C-score [32] based sampling
60% 80.6 GB 769 k 105 kB 77.5
40% 53.3 GB 512 k 104 kB 73.3
20% 26.3 GB 256 k 103 kB 65.1

Adjusting image reolution
30% 16.0 GB 1,281 k 13 kB 78.6
20% 9.6 GB 1,281 k 8 kB 75.2
10% 5.3 GB 1,281 k 4 kB 63.3

Adjusting JPEG quality factor 10 14.0 GB 1,281 k 11 kB 78.1
(an integer scale between 1-100 representing 5 11.0 GB 1,281 k 9 kB 74.6

particular compression levels) 1 9.3 GB 1,281 k 7 kB 67.8

SeiT (ImageNet-1k-5M [74], the full dataset) - 7.5 GB 5,830 k 1 kB 78.6
SeiT (ImageNet-1k-5M, 60% randomly sampled one) 60% 4.5 GB 3,498 k 1 kB 75.9

SeiT (ImageNet-1k, the full dataset) - 1.4 GB 1,281 k 1 kB 74.0

Table 2. Main results. ImageNet-1k results using various data storage reduction methods are shown. We compare SeiT against reduction
factors that achieve comparable performance and storage size. Note that the numbers for all reduction factors are included in Appendix B.2.

kens and produce a tensor that can be used as input to ViT.
The comparison among the different Stem-Adapter archi-
tectures is included in Section Section 4.3.

4. Experiments

In this section, we conduct various experiments to
demonstrate the effectiveness of token-based training. First,
we compare SeiT with four image compression methods
on ImageNet-1k [55]. Next, we explore the potential of
SeiT as a large-scale pre-training dataset by employing the
ImageNet-21k dataset. We also provide ablation studies
on the proposed token augmentation methods and Stem-
Adapter module to determine the effectiveness of each pro-
posed element. Lastly, we evaluate a continual learning sce-
nario on the ImageNet-100 [64] dataset to demonstrate the
benefits of tokens in a limited memory environment. The
fine-grained classification results can be found in Appendix.

4.1. ImageNet-1k classification

ImageNet-1k classification performances are summa-
rized in Table 2 and Fig. 1. Random sampling (yellow in
Fig. 1) had the most significant negative impact on perfor-
mance as storage capacity decreased. On the other hand,
sampling by C-score [32] (blue) also resulted in a notice-
able performance drop, but it performed better than random
sampling when storage capacity reduced to 10% of the orig-
inal. Although both sampling-based methods led to a con-
siderable performance drop even with a small decrease in
storage, JPEG-based compression methods (green) main-

tained their performance until storage reached 50% of the
original. When the quality was set above 50, the perfor-
mance remained nearly the same as the original, even with
24.3% of the original storage usage. However, when the
quality was set to 1, the performance dropped dramati-
cally to 67.8%. Adjusting the resolution (purple) achieved
better results than reducing the quality as storage became
smaller while reducing the quality performed better than re-
ducing the resolution with relatively large storage. Despite
the overall performance decline of image-based methods
in low-storage environments, SeiT achieved 74.0% accu-
racy while using only 1% of the original storage. Further-
more, by employing ImageNet-1k-5M [74], we were able
to access more storage on tokens and achieve 78.6% accu-
racy at 5% of the ImageNet-1k storage size, where JPEG-
based methods demonstrated performances lower than 75%.
These results highlight the effectiveness of SeiT in improv-
ing performance in low-storage scenarios.

We also evaluate SeiT model and the image-trained
model on robustness datasets, such as adding Gaussian
noise or Gaussian blur, ImageNet-R [26], and adversarial
attacks [42, 17] in Appendix B.6. We observe that without
strong pixel-level augmentations, SeiT shows lower perfor-
mance drops compared to the pixel-trained counterparts on
corruptions and distribution shifts. SeiT shows a significant
gradient-based attack robustness compared to others.

4.2. Storage-efficient token pre-training

We extract tokens from ImageNet-21k dataset and pre-
trained a ViT-B/16 model on the tokenized ImageNet-21k



Pre-training Fine-tuning Storage
Acc.

IN-21k IN-1k Size Ratio

- Pixels 140 GB 100.0% 81.8†

Tokens Tokens 16 GB 11.1% 81.1
Tokens Pixels 154 GB 110.0% 82.6
Tokens Tokens → Pixels 156 GB 111.4% 82.8

Table 3. Impact of storage-efficient pre-training (PT) and fine-
tuning (FT). We show the scenario of storage-efficient PT; we
pre-train a model with a tokenized ImageNet-21k with more data
points and fine-tune the model on the pixel or the token ImageNet-
1k dataset. † is from the original paper. “Tokens → Pixels” de-
notes three-staged FT, Token 21k PT, Token 1k PT and Pixels FT.

# PT images ×1.35 ×1.70 ×2.05 ×2.40 ×3.10
IN-1k FT Acc 79.1 81.4 81.0 80.9 82.5

Table 4. Sampling-based pixel PT. We show the IN-1k FT ac-
curacies by different PTs by subsampling ImageNet-1k-5M [74].
Pixel-based PT-FT strategy shows comparable accuracy to SeiT
when 410% storage size is used (82.5 and 82.8, respectively).

to determine the effectiveness of tokens as a large-scale pre-
training. We then fine-tuned the pre-trained model with
both tokenized ImageNet-1k and full-pixel ImageNet-1k,
respectively (details are in Appendix B.1). Additionally,
we extend our storage-efficient pre-training in three stages,
namely, 21k token pre-training→ 1k token pre-training→
1k image fine-tuning, following BeiT v2 [48] (details are in
Appendix B.4). The results are shown in Table 3.

The use of large-scale tokens for pre-training improved
not only the performance of ImageNet-1k benchmarks us-
ing tokens but also the performance of full-pixel images.
Pre-training with ImageNet-21k tokens led to a 2.5% per-
formance gain compared to using ImageNet-1k-5M to-
kens, using only 8GB more storage. Furthermore, our pre-
training strategy improved full-pixel ImageNet-1k perfor-
mance by 1.0% using only 11.4% more storage compared
to the original full-pixel ImageNet-1k training. It is only
27% storage size compared to the sampling-based image
pre-training strategy with a similar accuracy (410% of IN-
1k, showing 82.5% accuracy) as shown in Table 4.

4.3. Ablation study

We present an analysis of the proposed augmentation
methods, Stem-Adapter architectures, and results on con-
volutional networks. Table 5 reports the impact of the
proposed augmentations for tokens. We found that em-
ploying Token-CutMix not only stabilized the overall train-
ing procedures but also resulted in the largest performance
gain (8.1%) compared to excluding it. The newly pro-
posed methods for tokens, Embedding-Noise and Token-
EDA, also showed performance improvements of 0.3% and

Token-CutMix Token-EDA Emb-Noise Acc. (ViT-B)

✘ ✘ ✘ 63.8
✔ ✘ ✘ 71.9
✔ ✔ ✘ 72.2
✔ ✘ ✔ 73.3
✔ ✔ ✔ 74.0

Table 5. Impact of the proposed augmentations. ImageNet-1k
validation accuracies for the combination of the proposed augmen-
tations for tokens are shown.

Linear Conv 2× 2 Conv 4× 4

Accuracy 58.6 73.1 74.0

Table 6. Stem-Adapter architectures. We compare three Stem-
Adapter architectures for ViT-B/16 on ImageNet-1k. Note that
stride of Convolution layers set to 2.

1.4%, respectively. Interestingly, these methods not only
work effectively when used individually but also achieve
higher performance when used in combination (74.0%).

We also assessed the impact of the Stem-Adapter archi-
tecture on performance in Table 6. We compared two dif-
ferent Stem-Adapter architectures with our design choice.
Note that, we used a smaller learning rate of 0.0005 for the
linear Step-Adapter because of its unstable convergence us-
ing a larger learning rate and an input size of 14 × 14 to
match the number of input patches with the convolutional
Stem-Adapters. The results validate that our decision to use
Conv 4×4 as Stem-Adapter for ViT models yields the high-
est performance among the considered candidates.

We also investigated the applicability of SeiT to convolu-
tional networks. The benchmark results on different archi-
tectures of ImageNet-1k are presented in Table 7. Note that
token-based training only requires 1.4GB storage, which is
merely 1% of the storage required for pixel-based training.
To match the size of features after the stem layer, we used
a deconvolutional Stem-Adapter for ResNet [25] models.
Our findings indicate that SeiT can also be used for storage-
efficient training of convolutional models.

Finally, we show the impact of the tokenizer in Ap-
pendix B.5. In summary, we observe that SeiT works well
for various tokenizers, e.g., ViT-VQGAN [72] and VQGAN
[21] variants. We chose ViT-VQGAN considering the trade-
off between the performance and the storage size, and it is
solely trained on ImageNet-1k without external datasets.

4.4. Continual learning

To demonstrate the effectiveness of SeiT in memory-
limited settings, we compare SeiT with full-pixel datasets
in a continual learning scenario. Specifically, we employed
the Reduced ResNet-18 architecture on the ImageNet-100
dataset [64] and evaluated the results following the Expe-



Network
Pixel-based training Token-based training
Acc. Storage Acc. Storage

ViT-S [20] 79.9 140GB 73.5 1.4GB
ResNet-50 [25] 76.1 140GB 67.7 1.4GB

ResNet-18 69.7 140GB 58.0 1.4GB

Table 7. Comparisons on various architectures. We additionally
compare the performances of the pixel-training and token-training
accuracies of three architectures, including ViT-S, ResNet-50, and
ResNet-18, on the ImageNet-1k benchmark.

rience Relay [52]. We observed that when using the same
memory size, SeiT is significantly more memory-efficient
than images, with a storage capacity of 147 times that of
images. As a result, the total memory required to store the
entire dataset in tokens was less than 500MB. Fig. 4 illus-
trates the comparison results between using a token dataset
and a full-pixel dataset in three different settings.

The left figure shows the performances of the token
dataset and the full-pixel dataset by increasing memory size
while fixing the number of tasks to ten. SeiT outperforms
the pixel dataset and shows a neglectable performance drop
even when the memory size decreased, as it stored sufficient
data even with memory sizes below 100MB.

The center figure presents the results of changing the
number of tasks with a fixed memory size of 574MB (≈
1k images). In this case, both token and full-pixel datasets
exhibited decreased performance as the number of tasks in-
creased. However, the performance degradation of the to-
ken dataset was less severe than that of the full-pixel dataset.

Finally, with both memory size and the number of tasks
fixed, we varied the number of times the dataset was viewed
per task (the right figure). When there was only one task,
the full-pixel dataset outperformed the token dataset as the
epoch increased, consistent with other classification bench-
mark results. However, when there were ten tasks, the full-
pixel dataset had lower performance than the token dataset,
even with increased epochs due to insufficient stored data.

4.5. Implementation details

We used a pre-trained ViT-VQGAN Base-Base [72]
model for extracting tokens from the images. Extracting
tokens of entire ImageNet-21k dataset took 1.1 hours us-
ing 64 A100 GPUs with 2048 batch-size. We conducted
ImageNet-1k benchmark experiments using the ViT-B/16
model [20, 65] with an input size of 224 x 224. For token
ImageNet-1k training, we replaced the patch embedding
layer in ViT-B/16 model with the proposed Stem-Adapter
module and added a global pooling layer before the final
norm layer for tokens. We used a learning rate of 0.0015
with cosine scheduling and a weight decay of 0.1. The
model was trained for 300 epochs with a batch size of 1024.
We followed the training recipe proposed in DeiT [65] for
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Figure 4. Comparisons on the continual learning task. We train
two Experience Replay (ER) [52] models on the ImageNet-100
[64] dataset using the pixel dataset and the token dataset. (a) By
varying the memory size while the number of tasks is fixed by 10.
(b) By varying the number of tasks while fixing the memory size.
(c) By increasing the epochs per task. Note that except (c), we set
the epochs per task to 1 following the original setting [52].

remaining settings except for the data augmentations. We
also followed the training recipe proposed in DeiT for the
full-pixel ImageNet-1k training but made a few adjustments
to handle the reduced datasets. We used a smaller learning
rate of 0.0009 with a batch size of 1024 compared to the
original value of 0.001, as we found that the original learn-
ing rate did not converge well on smaller datasets. Also, we
increased the number of warm-up epochs and total train-
ing iterations when the number of data points decreased
to ensure a fair comparison. For large-scale token pre-
training and token fine-tuning, we adopted simple augmen-
tation strategies as suggested in DeiT-III [66]; we excluded
Token-EDA and replaced RRC with a simple random crop.
Following the DeiT-III training recipe, we pre-trained the
model with tokenized ImageNet-21k dataset for 270 epochs
and then we fine-tuned the model for 100 epochs both of
token and full-pixel dataset using learning rates of 0.00001
with 4096 batch-size and 0.0005 with 1024 batch-size, re-
spectively. We provide the more detailed hyper-parameter
setting of our experiments in Appendix B.1.

5. Conclusion
In this paper, we propose Storage-efficient Vision

Training (SeiT) by storing images into tokens. In practice,
we store an image into 1kB as a 32×32 token sequence
and propose an efficient and fast encoding and decoding
strategy for the token data type. We also propose token
augmentations and Stem-Adaptor to train vision transform-
ers with minimal modifications from the highly-optimized
pixel-based training. Our experiments show that compared
to the other storage-efficient training methods, SeiT shows
significantly large gaps; with the same amount of storage
size, SeiT shows the best performance among the compar-
ison methods. Our method also shows benefits in other
practical scenarios, such as storage-efficient large-scale pre-
training and continual learning at scale.



Appendix

In this additional document, we describe more details
of SeiT in Appendix A, including the details of token
encoding-decoding algorithms (Appendix A.1), the visual-
ization of Emb-noise augmented tokens (Appendix A.2).
We also include additional experimental results in Ap-
pendix B, including the hyperparameter details (Ap-
pendix B.1), the full experimental results of Table 2 (Ap-
pendix B.2), the additional results on storage-efficient pre-
training (Appendix B.4), exploring other tokenizers (Ap-
pendix B.5), and robustness benchmarks (Appendix B.6).

A. More Details for SeiT

A.1. Pseudo-code for Token Encoding-Decoding

Algorithm 1 and Algorithm 2 describe the psuedo-codes
for the proposed token encoding and decoding. Here, we
assume max ti < 2M+1 for the simplicity. For example,
in our main experiments, each token belongs to 391 classes
and we set M = 8, hence, max ti = 391 < 28+1 = 512.
If the number of token classes is larger than 2M+1, then
our algorithm can be naturally extended by repeating line
6-7 in Algorithm 1. By this simple algorithm, we achieved
a nearly optimal compression ratio (1.11 kB vs. 1.08 kB
per image) where almost 0.63 smaller than the 16-bit en-
coding (2.0 kB per image). Note that, we use the native
gzip library to perform Huffman encoding and decoding
for simplicity.

Algorithm 1 An algorithm for token encoding
Require: A sequence of tokens T = [t1, . . . , tN ], the bits

for the storage M
1: LT ← [ϕ] ▷ Initialize an empty list for tokens
2: Lidx ← [ϕ] ▷ Initialize an empty list for start indices
3: j ← 0
4: while i ≤ N do
5: if ti ≥ 2M then
6: LT.append (2M )
7: LT.append (ti − 2M )
8: j ← j + 2 ▷ Assume ti < 2M+1 for simplicity
9: else

10: LT.append (ti)
11: j ← j + 1
12: end if
13: Lidx.append (j)
14: i← i+ 1
15: end while
16: Return: Huffman encoding (LT , Lidx)

Algorithm 2 An algorithm for token decoding
Require: A compressed bytestring LT ′ from Algorithm 1

1: LT = [t0, . . . , tN ], Lidx ←
Huffman deencoding (L′

T , L
′
idx)

2: T ← [ϕ]
3: i← 0
4: while Lidx is not empty do
5: j ← Lidx.pop (0)
6: k ← i
7: while k ≤ j do
8: if tk ≥M then
9: T.append (tk + tk+1)

10: k ← k + 2
11: else
12: T.append (tk)
13: k ← k + 1
14: end if
15: end while
16: i← j
17: end while
18: Return: T

(a) Reconstruction (b) Full-size noise added

(d) Ours(c) Channel-wise noise added

Figure A.1. Emb-Noise visualization. “Reconstruction” denotes
the reconstructed image by the ViT-VQGAN decoder from the ex-
tracted tokens. “Full-size noise” is a random noise whose size is
equivalent to the embedding vectors.

A.2. ViT-VQGAN decoded images for Emb-Noise

Fig. A.1 and Fig. A.2 show the visualization examples
of the Emb-Noise augmented tokens and the tokens without
augmentation. We use the ViT-VQGAN decoder for visu-
alization. We observe that our Emb-Noise can make mean-
ingful distortions on the decoded images.



Figure A.2. Channel-wise modification visualization. We present ViT-VQGAN decoded images obtained by adding a constant to each
of the 32 channels in codebook vectors.

B. Additional Experimental Results
B.1. Hyperparameter details

Table B.1 shows the full list of hyperparameters used
in our experiments. All hyperparameters are for the ViT-B
backbones. In the table, Token IN-1k corresponds to SeiT
(ImageNet-1k) in Table 2, Token IN-21k PT corresponds
to token pre-training in Table 3, and Token FT and Image
FT correspond to token and image fine-tuning in Table 3,
respectively. For other backbones and datasets, we only ad-
just the learning rate as the maximum learning rate showing
a stable convergence (e.g., We use 0.15 for ResNet and ViT-
S uses the same learning rate as ViT-B).

B.2. The full experimental results

We report the full experimental results in Table B.5. De-
tails are the same as Table 2.

B.3. Other datasets

The performances of SeiT on various datasets are re-
ported in Table B.2. We tokenize the datasets and then
fine-tune a model (ViT-B) with the tokenized dataset, us-
ing token-trained model weights. The token-trained models
weights, Token (IN-1k) and Token (IN-21k, IN-1k) achieve
top-1 accuracies of 74.0%, 81.1% on ImageNet-1k, respec-
tively. The pixel counterpart is fine-tuned on pixel target
datasets from the pixel pre-trained model; Pixel (IN-1k),
showing 81.8% top-1 accuracy on IN-1k. We followed the
pixel-training recipes of DeiT [65]. Although we do not
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Figure B.1. Adversarial robustness of DeiT and SeiT by vary-
ing ε. ε = 0 denotes the clean accuracy.

modify the training recipe for tokens, the results verify the
possibility of SeiT on those datasets.

B.4. Three-stage storage-efficient pre-training

Following BeiT v2 [48], we extend our storage-efficient
pre-training in three stages, namely, 21k token pre-training
→ 1k token pre-training→ 1k image fine-tuning. For sim-
plicity, we directly fine-tune the “21k token pre-trained and
1k token fine-tuned model” (i.e., 81.1% model in Table 3)
on the image pixels with the same optimization hyperpa-
rameter of the image fine-tuned model. As a result, we have
82.8% top-1 accuracy, slightly better than the original two-
staged training strategy (+0.2% than 82.6%).



Methods DeiT IN-1k [65] Token IN-1k Token IN-21k PT Token IN-1k FT Image IN-1k FT

Epochs 300 300 270 100 100

Batch size 1024 1024 2048 4096 512
Optimizer AdamW AdamW AdamW AdamW AdamW
Learning rate 0.0005 x bs

512
0.00075 x bs

512
0.0015 0.00001 0.0005

Learning rate decay cosine cosine cosine ✘ cosine
Weight decay 0.05 0.1 0.02 0.1 0.05
Warmup epochs 5 5 5 5 5
Label smoothing 0.1 0.1 0.1 0.1 0.1
Dropout ✘ ✘ ✘ ✘ ✘
Stoch. Depth 0.1 0.1 0.1 0.15 0.1
Gradient Clip ✘ ✘ ✘ ✘ ✘

Cutmix prob. 1 1 1 1 1
Mixup prob. 0.8 0 0 0 0.8
RandAug 9 / 0.5 - - - 9 / 0.5
Repeated Aug ✔ - - - ✘
Erasing prob. 0.25 - - - 0
EDA prob. - 0.25 (RS) / 0.25 (SR) 0 0 -
Emb-Noise prob. - 0.5 0.5 0.5 -

Table B.1. Hyperparamters for SeiT and DeiT-B. All hyperparameters are for the ViT-B backbone. DeiT IN-1k is the same as the original
DeiT paper (baseline).

Pre-trained on Flowers Cars iNat18 iNat19

Pixel (IN-1k) 98.0 91.8 73.0 77.7
Token (IN-1k) 93.5 79.7 43.1 50.1
Token (IN-21k, IN-1k) 98.7 84.5 50.1 58.3

Table B.2. Other datasets. We report the top-1 accuracies on di-
verse fine-grained datasets achieved by SeiT. We tested SeiT on
the Flowers [46], StanfordCars [36], iNaturalist (iNat)-18 [28] and
iNat-19 [27] datasets.

B.5. Exploring other tokenizers

In this subsection, we explore other tokenizers rather
than ViT-VQGAN [72], e.g., VQGAN [21]. We em-
ploy four VQGAN models from the official repository3,
ImageNet-trained VQGAN with patch size 16 and vocab-
ulary size 1024, ImageNet-trained VQGAN with patch size
16 and vocabulary size 16384, OpenImages [37]-trained
VQGAN with patch size 8 and vocabulary size 256, and
OpenImages [37]-trained VQGAN with patch size 8 and
vocabulary size 8192. Here, the last VQGAN model is
trained with the Gumbel softmax [30, 41] quantization, in-
stead of the original vector quantization by VQ-VAE [67].
Here, we slightly change our Stem-Adopter from 4×4 Conv
with stride 2 to 2×2 Conv with stride 1 for tokenizers with
patch size 16.

In Table B.3, we report the ViT-S (SeiT) top-1 accuracy
on the ImageNet-100 benchmark by varying the choice of
tokenizers. We also report the reported ImageNet-1k val-
idation FID score of each tokenizer. In the table, we ob-
serve that the top-1 accuracy of SeiT follows the generation

3https://github.com/CompVis/taming-transformers

quality (FID) if we use the same quantization method (e.g.,
vector quantization). The ViT-VQGAN shows the best FID
(1.28) as well as the best ImageNet performance with SeiT
(77.3). While the Gumbel quantized VQGAN achieves the
best performance, in practice, we use ViT-VQGAN due to
two reasons. First, the storage efficiency: 2886 valid codes
need 1.5 times more storage than 391 valid codes. Second,
Although the OpenImages [37]-trained VQGAN shows bet-
ter quality, it needs to be trained on a large-scale external
dataset. We did not use the OpenImages-trained VQGAN
for a fair comparison with other ImageNet-1k-only training
methods.

B.6. Robustness benchmarks

We compare ViT-S models trained on ImageNet-1k with
different training strategies using robustness benchmarks.
We employ three scenarios: (1) noise and blur scenario (2)
domain shift scenario (3) adversarial attack scenario. For
the first scenario, we add Gaussian noise and Gaussian blur
to the validation images. We use ImageNet-R [26] and
Sketch-ImageNet [69] for testing the robustness against do-
main shifts. Finally, we use a weak version of AutoAttak
[17] for measuring adversarial robustness.

As the original DeiT is trained on strong augmentation,
such as RandAugment or 3-Augment, we also compare our
method with “weak augmented” ViT-S, where it only em-
ploys resized random crop (RRC) and CutMix [73]. Our
assumption is that because the pixel-trained models are sen-
sitive to imperceptible details, they will be less robust than
our approach in noise or adversarial attack scenarios. How-
ever, on the other hand, because our method relies on the en-
coding power of the pre-trained tokenizer, if the employed
tokenizer is not a robust feature extractor, our method could

https://github.com/CompVis/taming-transformers


Tokenizer Training dataset Quantiztation Voca size (# of valid voca) PS FID ViT-S (SeiT) Acc

VQGAN ImageNet Vector quantization 1024 (454) 16 7.94 75.3
VQGAN ImageNet Vector quantization 16384 (971) 16 4.98 76.9
VQGAN OpenImages Gumbel quantization 8192 (2886) 8 1.49 79.1
VQGAN OpenImages Vector quantization 256 (256) 8 1.49 81.8
ViT-VQGAN ImageNet Vector quantization 8192 (391) 8 1.28 77.3

Table B.3. Exploring other tokenizers. Various ViT-S (SeiT) results on the ImageNet-100 benchmark are shown. We compare various
VQGAN tokenizers with ViT-VQGAN by varying the quantization methods (Gumbel softmax vs. vector quantization) the vocabulary size,
the valid vocabulary size (the number of classes actually used for the ImageNet-1k training dataset), and the patch size (PS).

Model Data format Clean Gauss. Noise Gauss. Blur ImageNet-R Sketch

ViT-S (DeiT) Pixels 79.9 75.1 (6.0%) 73.4 (8.1%) 28.8 (63.9%) 29.9 (62.6%)

ViT-S (Weak Aug) Pixels 78.0 64.7 (17.1%) 66.8 (14.4%) 20.8 (73.4%) 18.1 (76.8%)
ViT-S (SeiT, ours) Tokens 74.0 60.8 (17.3%) 65.3 (11.2%) 26.0 (64.6%) 23.0 (68.7%)

Table B.4. Robustness evaluation. We show the clean and robust accuracies against corruptions and domain shifts of each model trained
on ImageNet-1k. The performance drops are put in parentheses (lower is better) for robust accuracies.

be more vulnerable than pixel-trained counterparts.
Table B.4 shows the results of the first and the sec-

ond scenarios. Here, we observe two important findings.
First, when we use the same augmentations with the same
strength (ViT-S Weak Aug vs. ViT-S SeiT), SeiT shows
smaller performance drops on both noise scenarios and do-
main shift scenarios. On the other hand, when we use
strong pixel-level augmentations, the pixel-trained counter-
part outperforms our approach. It implies that the key to the
input pixel robustness depends on the pixel-level augmenta-
tions with severe distortions as observed by previous studies
[13, 62]. However, because our method uses only tokens,
not pixels directly, investigating how to explore pixel-level
distortion augmentations on the token level will be an open
question and an interesting future research direction.

We also compare the adversarial robustness of DeiT-
S and SeiT-S. We employ the APGD (a step size-free
version of PGD attack [42]) with cross-entropy loss and
DLR loss, following AutoAttack [17]. Because SeiT em-
ploys discrete non-differentiable representations in the com-
putational graph, we employ the straight-through estima-
tor (STE) [9] to estimate the non-differentiable gradients,
following Athalye et al. [5]. We also evaluate the non-
quantized version of the quantizer (i.e., omitting the vector
quantization process, but using the extracted feature by the
encoder directly to the ViT input), but we empirically ob-
serve that attacking the non-quantized version cannot drop
the performance at all. Instead, we use the STE, also used
during the training as well as the previous extensive robust-
ness study [5]. We compare the attacked accuracies of DeiT
and SeiT by varying ε (a control parameter for the attack
intensity) from 0 to 8 in Fig. B.1. We observe that SeiT
shows almost neglectable performance drops even under the
strongest attack (showing 73.95 for ε = 8 where 73.98 for

ε = 0), where DeiT shows 2.8% top-1 accuracy.
However, we should be careful to interpret Fig. B.1; it

could be due to a strong obfuscated gradient effect [5] that
cannot be detected by a naive straight-through estimator.
Moreover, our method could be vulnerable to the codebook
attack by changing the token indices directly, not by per-
turbing the pixels. However, as an efficient and natural ad-
versarial attack on discrete domains is still an open prob-
lem [76] (e.g., altering indices as imperceptible to humans
but sensitive to machines — only a small index change can
make a huge semantic gap, such as replacing “huge” in the
previous sentence to “neglectable”), we leave the investi-
gation of advanced adversarial attack methods for SeiT be-
yond straight-through estimator as future work.



Method Storage size # of images Top1 Acc.

Full-pixels 100% 140 GB 1.28 M 81.8

Uniform random sampling

20% 27.2 GB 0.26 M 59.8
30% 41.0 GB 0.38 M 69.3
40% 54.6 GB 0.51 M 74.0
50% 68.4 GB 0.64 M 76.0
60% 82.0 GB 0.77 M 77.8
70% 95.7 GB 0.90 M 78.2
80% 109.3 GB 1.02 M 79.4
90% 123.1 GB 1.15 M 81.1

C-score based sampling

20% 26.3 GB 0.26 M 65.1
30% 39.8 GB 0.38 M 69.4
40% 53.3 GB 0.51 M 73.3
50% 66.9 GB 0.64 M 76.9
60% 80.6 GB 0.77 M 77.5
70% 94.3 GB 0.90 M 79.2
80% 108.1 GB 1.02 M 80.4
90% 121.8 GB 1.15 M 80.9

Adjusting image reolution

10% 5.3 GB 1.28 M 63.3
20% 9.6 GB 1.28 M 75.2
30% 16 GB 1.28 M 78.6
40% 24 GB 1.28 M 79.4
50% 34 GB 1.28 M 80.9
60% 46 GB 1.28 M 80.8
70% 60 GB 1.28 M 81.6
80% 75 GB 1.28 M 81.6
90% 93 GB 1.28 M 80.8

Adjusting JPEG quality factor

1 9.3 GB 1.28 M 67.8
5 11 GB 1.28 M 74.6

10 14 GB 1.28 M 78.1
25 23 GB 1.28 M 80.7
50 34 GB 1.28 M 81.1
75 50 GB 1.28 M 81.5
85 66 GB 1.28 M 81.3
90 79 GB 1.28 M 80.9
95 113 GB 1.28 M 81.6

SeiT (ImageNet-1k, ours) 1.36 GB 1.28 M 74.0
SeiT (ImageNet-1k-5M, ours) 7.49 GB 5.83 M 78.6

SeiT (ImageNet-1k, OpenImages-VQGAN) 1.36 GB 1.28 M 78.4
SeiT (ImageNet-1k-5M, OpenImages-VQGAN) 7.49 GB 5.83 M 78.7

SeiT (IN-21k tokens→ 1k tokens, ours) 16 GB 12.4 M 81.1
SeiT (IN-21k tokens→ 1k tokens, OpenImages-VQGAN) 16 GB 12.4 M 82.3

SeiT (IN-21k tokens→ 1k pixels, ours) 154 GB 12.4 M 82.6
SeiT (IN-21k tokens→ 1k tokens→ 1k pixels, ours) 156 GB 12.4 M 82.8

Table B.5. The full main results. The full results of Fig. 1, Table 2 and Table 3. The results in the rows denoted to OpenImages-VQGAN
are obtained by utilizing OpenImages-trained VQGAN with patch size 8 and vocabulary size 256 as the tokenizer.
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