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Abstract
This position paper argues that deep neural net-
works (DNNs) mostly determine their outputs
during the early stages of inference, where bi-
ases inherent in the model play a crucial role in
shaping this process. We draw a parallel between
this phenomenon and human decision-making,
which often relies on fast, intuitive heuristics. Us-
ing diffusion models (DMs) as a case study, we
demonstrate that DNNs often make early-stage
decision-making influenced by the type and extent
of bias in their design and training. Our findings
offer a new perspective on bias mitigation, effi-
cient inference, and the interpretation of machine
learning systems. By identifying the temporal dy-
namics of decision-making in DNNs, this paper
aims to inspire further discussion and research
within the machine learning community.

1. Introduction
How do artificial deep neural networks (DNNs) determine
their outputs? What is the inner mechanism of the infer-
ence of DNNs? Despite the importance of this question,
we still know very little about their inference mechanism.
This question becomes particularly intriguing when compar-
ing DNNs to human decision-making systems. Do DNNs
make decisions through deliberate, iterative reasoning, or
do they arrive at their outputs almost instantaneously during
inference? While these questions are challenging to answer,
human decision-making offers some interesting analogies.

Machine learning (ML) researchers often assume that hu-
mans are rational and logical, while machines are biased
and less reliable. However, extensive research from cogni-
tive science and psychology supports that human decisions
are not purely rational. Instead, humans often rely on intu-
ition (Haidt, 2001; Kahneman, 2002; 2003; Gigerenzer &
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Gaissmaier, 2011) and emotion (Slovic et al., 2007; Jarcho
et al., 2011) as heuristics during the early stages of decision-
making, with rationality serving to justify outcomes post-
hoc (Kahneman, 2003; Evans, 2008; Gigerenzer & Gaiss-
maier, 2011). Heuristics is fast and efficient but prone to
errors, while rationality is slower and more deliberate. This
position paper suggests a hypothesis that this dual-process
theory for human decision-making systems may coincide
with the inner mechanism of DNN inference.

In this position paper, we hypothesize that DNNs may deter-
mine their outputs during the early stage of the inference
process, with the timing of this determination may de-
pend on their “heuristics” (or in a more ML-related
term, “bias” or “shortcut”). Specifically, we argue that
DNNs rely on early-stage “intuitive” mechanisms, analo-
gous to human heuristics, to quickly fix key aspects of their
outputs. The remaining stages of inference serve to refine
and finalize these initial decisions. Furthermore, we sup-
pose that the timing of this early-stage determination is
modulated by the model’s bias toward specific features. For
example, a model heavily biased toward color may fixate on
color features earlier in the inference process than on other
attributes, such as shape (Geirhos et al., 2018).

To explore this hypothesis, we analyze the inference process
of large-scale generative models (GMs) which have been
attracting significant attention not only for their impressive
generation quality but also for their potential connections
to human intelligence. These models demonstrate emergent
properties such as creativity, contextual understanding, and
flexibility, which were traditionally considered unique and
special properties of human cognition. By examining how
powerful GMs estimate outputs, we can gain insights into
both the strengths and limitations of machine intelligence.

Specifically, we study the inference mechanism of diffusion
models (DMs), which generate outputs iteratively and pro-
vide a temporal trajectory of decision-making (Ho et al.,
2020; Song et al., 2021). By focusing solely on the infer-
ence process of pre-trained DMs, we eliminate confounding
factors introduced during training, allowing us to isolate
and analyze how these models “determine” their outputs at
each step of the generation process. The step-by-step iter-
ative mechanism of DMs makes them particularly suitable
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Figure 1. Overview of the proposed framework. We choose two prompts (initial prompt ci and altered prompt ca) formatting “A photo
of [attribute] [entity]”, where two prompts have the same [entity] but different [attribute]. At the timestamp ts, we
alter the initial text condition ci to the new condition ca. Then, we measure the impact of each prompt using the CLIP similarity between
the generated image and text prompts. We can observe that there exists a “switching point” where the generated image is influenced more
to ca rather than ci (e.g., 9 for the apple example and 15 for the backpack example). Different attributes show different switching points,
whereas a more biased attribute has an earlier one (e.g., the left color example shows an earlier conversion than the right pattern example).

for studying the timing and dynamics of output determi-
nation, as they provide a temporal trajectory of decision-
making rather than a single forward pass seen in conven-
tional DNNs. Furthermore, their ability to understand high-
level inputs like language prompts enables a more human-
understandable framework for studying inference behavior.

We investigate how quickly text-to-image (T2I) DMs fix
their decisions during the iterative process. As illustrated
in Figure 1, we first guide the model with an initial prompt
(e.g., “a photo of a red apple”) and alter the prompt in the
middle of the diffusion process (e.g., “a photo of a green
apple”). We measure whether the generated images follow
the initial or altered prompt to determine the “timing” of the
decision-making. Conceptually, if we alter the prompt at the
first step, the generated image will be aligned to the altered
prompt (i.e., “green apple” as shown in the ts = 0 example).
On the other hand, if we alter the prompt at the later diffu-
sion process, the generated image might not consider the
altered prompt but simply follow the initial prompt (i.e., “red
apple” as shown in the ts = 15 example). There might be
a “switching point” where the generated image follows the
altered prompt rather than the initial prompt; we define this
switching timing as the moment of the “decision-making”
with “heuristic”. If this timing is closer to the early stages,
it would suggest that the final output is already determined
very early in the process. Conversely, if the change occurs
closer to the later stages, it would indicate that the output
is generated with deliberation. Furthermore, as shown in
Figure 1, we observe that the timing becomes later if we use
a less biased attribute, e.g., the backpack pattern example
shows later switching than the apple color example.

In our experiments, we examine five state-of-the-art T2I
DMs and show that most models determine their outputs
in the early inference stage (e.g., around 5 steps among 50
diffusion steps). Furthermore, if we use a more biased cue
(e.g., color), a model tends to fix their output earlier than
a less biased cue (e.g., material). For example, when we
use color prompts, SD1.4 tends to “switch” the predicted
output at step 7, while when we use material prompts, the
timing becomes around 30. We observe that this tendency of
the hasty determination and the bias-related timing happens
regardless of the choice of the models.

2. Related Work
2.1. Human decision-making system

Human decision-making system is a complex interplay be-
tween intuitive and deliberative processes. Haidt (2001)
suggested that human judgments, particularly moral ones,
are dominantly driven by intuitive processes, with reasoning
often serving as a post hoc justification. Kahneman (2002)
further elaborated on this dual-process theory, distinguish-
ing between System 1 (fast, automatic, and intuitive) and
System 2 (slow, effortful, and analytical) processes. Sys-
tem 1 dominates most everyday decision (Evans, 2008) and
enables humans to make rapid decisions, often relying on
efficient heuristics, but can introduce biases (Gigerenzer &
Gaissmaier, 2011). This heuristics can be intuition (Evans,
2008) or emotion (Slovic et al., 2007). These works high-
light that human decision-making is not purely rational but
deeply influenced by intuition, emotion, and heuristics. In
this paper, we suppose that artificial systems may also have
a similar mechanism with humans.
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Figure 2. The inference process of DMs (i.e., reverse process) is tractable over each intermediate output and each step is controllable by a
flexible and human-understandable text prompt. We examine the temporal dynamics of inference using this iterative inference process.

2.2. Machine decision-making system and their bias

DNN inference mechanism has been widely studied, mostly
focusing on their hierarchical behavior. Zeiler & Fergus
(2014) demonstrated that DNNs behave as sequential fea-
ture extractors, with earlier layers capturing low-level fea-
tures such as edges and textures, and deeper layers focusing
on more complex patterns and object parts. Similarly, the
information bottleneck theory (Tishby & Zaslavsky, 2015;
Saxe et al., 2018) explains that earlier layers compress the
input by removing redundant features, while later layers
focus on prediction. While these approaches provide valu-
able insights for DNN inference, they assume unified and
consistent behavior regardless of input properties.

Recent research highlights that DNNs are inherently biased
or rely on “shortcuts” (Geirhos et al., 2020), namely, DNNs
prefers simpler features (e.g., color or texture) over more
complex ones (e.g., shape) (Geirhos et al., 2018). Although
an architectural difference can make a minor change (Bren-
del & Bethge, 2019; Bahng et al., 2020; Naseer et al., 2021),
as shown by Scimeca et al. (2022), these biases exist regard-
less of the network architecture. Furthermore, certain cues
(e.g., color) are preferred to other more complex ones (e.g.,
shape), highlighting that DNNs are inherently more likely to
be biased toward features that are computationally simpler.
This paper supposes that this preference behaves similarly to
“fast heuristics” in DNNs, enabling efficient but potentially
error-prone decision-making during early inference stages.

3. Preliminary: Diffusion Models
Diffusion models (DMs) (Ho et al., 2020; Song et al., 2021)
are a class of generative models (GMs) that iteratively re-
fine noise to predict outputs. In the forward process of DM,
noise is iteratively added to input over multiple steps (Fig-
ure 2 “forward process”). The reverse process incremen-
tally denoises the corrupted data by a network, reconstruct-
ing the original input (Figure 2 “reverse process”). More
specifically, we generate an output by the reverse process,
pθ(xT ) := p(x0)

∏T
t=1 pθ(xt|xt−1), where x0 denotes a

random Gaussian noise, the first step of inference, and xT

denotes an image, the last step.1 Namely, from a random
Gaussian noise, a DM iteratively predicts the next output
T times to estimate the distribution of data x. We suppose
that each diffusion step denotes the “stage” of final decision-
making, where the total number of stages is T (i.e., the
number of diffusion steps). Unless specified, we set the
diffusion step to 50 for all experiments.

A key advantage of DMs lies in their iterative generation
process, which allows for explicit control over the genera-
tion steps. This iterative nature is beneficial for analyzing
the decision-making dynamics, as each step provides a snap-
shot of the intermediate stages of the model’s output. Specif-
ically, a text-conditioned DM uses text embeddings from
the pre-trained models (e.g., CLIP (Radford et al., 2021))
for the reverse process, producing outputs aligned with the
given text prompt (Figure 2b). By using a natural language
condition, we can use a human-understandable condition
to control each intermediate stage of the model’s output.
These properties make DM easier to analyze by conflict-
ing a prompt and observing how the model output aligns
with human-understandable cues. We use this iterative in-
ference process as a proxy of the temporal dynamics of
machine inference, resembling human reflection or delibera-
tion processes. In the following experiments, we will inspect
whether DNN inference is mostly dominated by early-stage
or distributed more evenly across the iterative process.

4. DNNs Determine Their Outputs in the Early
Stages of Inference, Influenced by Bias

4.1. Experiment design

The overview of our experiment is illustrated in Figure 1.
Assume we have two different text prompts, an initial
prompt ci (e.g., “red apple”) and an altered prompt ca (e.g.,
“green apple”). We start generation with ci until a timestamp
ts ∈ [0, T ], where x0 equals a random Gaussian noise. From

1Note that it is a convention to use t = 0 for the original image
and t = T for the noise space. However, this paper uses t as the
step of inference, i.e., t = 0 for random noise (the first step of the
inference) and t = T for image (the last step of the inference).
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ts, we change ci to ca and generate an image xts , i.e., xT

equals to an image solely guided by ci and x0 equals to an
image guided by ca. We then analyze how the final gener-
ated image xts reflects ci and ca (e.g., check whether the
generated apple is red or green). More specifically, we quan-
tify the impact of each prompt using the CLIP image-text
similarity function S(xts , ci) and S(xts , ca). If S(xts , ci)
is larger than S(xts , ca), we may assume that the network
already determines the final output with ci at timestamp ts.

1.0
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t
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Figure 3. We show examples of xts by varying ts from 0 to T and
their estimated CLIP scores. The x-axis denotes ts, the timestamp
where the initial prompt ci is changed to the altered prompt ca.
The y-axis denotes the ratio of S(xts , ci) and S(xts , ca); higher
means the generated image is more influenced by ca and vice
versa. When will the generated image be more influenced by ca
than ci? If the output is more influenced by ci, then we need a
smaller ts to make the image more influenced by ci (e.g., the t1
case). Otherwise, a larger ts will be sufficient (e.g., the t3 case).

We define the “switching point” t′s is the smallest timestamp
where S(xt′s , ci) > S(xt′s , ca). If the switching point t′s is
closer to the start of the inference process, it suggests that
the model determines the major properties of the generated
image at an early stage. Conversely, if t′s occurs closer to T ,
it implies that more inference steps are required to finalize
the output. For example, the t1 case of Figure 3 determines
the output earlier than t2 and t3 cases. By measuring t′s
under various conditions, we support our hypothesis that
DNNs may determine their outputs during the early
stage of the inference process, with the timing of this
determination being influenced by their inherent biases.

We evaluate five text-conditioned DMs: Stable Diffusion 1.4
(Rombach et al., 2022), Stable Diffusion XL (Podell et al.,
2023), Stable Diffusion 3 (Esser et al., 2024), Kandinsky
3 (Arkhipkin et al., 2023), and Karlo UnCLIP (Lee et al.,
2022), considering their architectural differences. We use
the pre-trained weights available from HuggingFace. We
describe more details in Appendix A.1. For the CLIP simi-
larity, we use ViT-H-14 CLIP trained by Fang et al. (2024).

We consider text prompts in the format “A photo of a
[attribute] [entity]” in two distinct scenarios. In

the first scenario, [attribute] corresponds to color, pat-
tern, shape, and material, while [entity] represents one
of 10 common objects that shows minimal bias for the given
attributes. In the second scenario, [attribute] refers
to gender and ethnicity, and [entity] corresponds to 16
professions chosen to include diverse contexts and demo-
graphic representations. For both scenarios, we measure the
switch timing between prompts with the same entity but
different attributes, e.g., “red apple” and “green apple”.

Scenario 1. Common objects. We use four visual at-
tribute groups: color (10 attributes, e.g., “red” or “green”),
pattern (7 attributes, e.g., “stripes” or “paisley”), shape
(6 attributes, e.g., “round”, “square”), and material (8 at-
tributes, e.g., “fabric” or “metal”). For each attribute group,
we choose 10 objects that is minimally biased to the at-
tribute group (e.g., “pen” for color, “backpack” for pattern,
and “bowl” for material) – the full list is in Appendix A.2.
For each attribute type, we randomly select ten pairs of at-
tributes (e.g., red and green) and generate five different sets
for each object, where each set contains generated image
xts from ts = 0 to ts = T = 50. Namely, we generate
10×5×50×10 = 25, 000 images for each attribute. In our
experiment, we have four attribute groups and five models,
hence, 500k generated images are used for analysis.

Scenario 2. Humans. Following StableBias (Luccioni
et al., 2024), we choose gender (male, female, and non-
binary) and ethnicity (black, white, asian, and hispanic)
as the altering attributes, i.e., [attribute].2 We also
choose 16 professions as [entity], which show the most
and the least diverse generation results across genders and
ethnicities from StableBias. For example, Luccioni et al.
(2024) showed that DMs generate the most diverse images
for “singer” and the least diverse ones for “tractor operator”.
The full list of 16 professions can be found in Appendix A.2.
Similar to scenario 1, we generate ten set of images for each
pair of attributes (gender has six valid pairs and ethnicity has
12 valid pairs) and each profession. Namely, we generate
(6+12)× 10× 50× 16 = 144, 000 images for each model,
and overall 720k generated images are used for analysis.

4.2. DNN outputs are determined at an early stage

Figure 4 shows the average of S(xts , ci) as blue lines and
the average of S(xts , ca) as orange lines from ts = 0 to
50 for five models and four attribute types (color, pattern,
shape, and material) with standard errors. In most cases, the
“switching point” t′s occurs very early in inference, often

2We acknowledge that these attributes cannot represent all hu-
man beings and some attributes can be even inadequate. However,
we clarify that we chose the terms from StableBias (Luccioni et al.,
2024) with a careful initial study. We will clarify more details in
Impact Statement section.
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Figure 4. DNNs may determine the major properties of their output at an early stage. We plot the average and the standard error of
S(xts , ci) and S(xts , ca). S(xts , c) denotes a CLIP similarity between a text prompt c and a generated image xt

s by altering the initial
prompt ci to altered prompt ca at timestamp ts. x0 equals to an image fully conditioned by ca and x50 equals to one conditioned by
ci (Figure 3 shows an example). Each point is computed with 50 samples (10 attribute pairs and 5 random seeds). The red line is the
“switching point”, the smallest t′s where S(xt′s , ca) > S(xt′s , ci) on average, which is a proxy of the timing of the “determination”.
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Figure 5. Cumulative histogram of the sample-wise switching timing for each model and attribute. Note that we have ten objects, ten
attribute pairs, and five random seeds; hence, each histogram contains 500 samples.

within the first 15 steps, or even within the first 5 steps out
of 50. We also plot the histogram of t′s for each model and
attribute in Figure 5. From the figures, we observe that for
some settings, only very few steps are required to determine
the property of the generated outputs. For example, Stable
Diffusion 3 fixes its output for 60% of generated images with
color attributes within just five steps (Figure 5). However,
even for the same model, more steps are required to
determine the outputs with a more “difficult” attribute.
For example, Stable Diffusion 3 with material attributes

requires over 20 steps to reach the same threshold.

While most of the models show the gap between switch
timing measured by easy features (e.g., color) and difficult
features (e.g., material), we observe that the Karlo UnCLIP
model shows a smaller gap compared to the others. We pre-
sume that this is because UnCLIP has two modules taking
separate text conditions; the prior model and the decoder
model. We only control the text condition on the prior model,
while the decoder model only takes the initial prompt ci. We
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Figure 7. Cumulative histogram of the sample-wise switching timing for human attributes. The details are the same as Figure 5.

plot the case when the decoder model is controlled while
the prior model only uses ci in Appendix B.1

Figure 6 and Figure 7 show that the models behave for
human attributes similarly to the results of common objects.
Figure 6 shows that the switching happens at an early stage
as common object examples. We found that their average
switching timing would not be as early as common objects,
but if we focus on specific attributes, we can still observe

similar phenomena. Specifically, Figure 7 shows that the
switching timing is also affected by how the model is
initially biased to a specific attribute. For example, the
first row shows that most models are male-biased, i.e., male
images are easier to generate, but female images are more
easily altered by the male prompt. More significantly, this
gap becomes even larger for ethnicity attributes; the models
are severely biased toward a specific ethnicity.
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Figure 8. Diversity vs. determination timing. We plot the rela-
tionship between the diversity measure of the generated images
and the early determination timing for (a) human attributes and (b)
common objects. We use normalized entropy for common objects
due to the numbers of attributes are different by their types.

4.3. The timing of early determination may be
dominated by inherent bias of the model

Why does early determination occur? Why is there a gap
between the determination timings for different attributes?
In this subsection, we hypothesize this is because of the
inherent bias of the models and empirically support this
claim. Namely, if a model shows a more biased behavior
for a specific attribute (e.g., color), its switching timing will
become earlier than a non-biased attribute (e.g., material).

We first verify this hypothesis with the bias in human gen-
eration found by StableBias (Luccioni et al., 2024). Sta-
bleBias provides a diversity measure of generated images
for specific professions and models, where the diversity is
measured by the prediction entropy on pre-defined cluster-
ing. We plot the relationship between gender generation
diversity and the average switch timing for each profession
in Figure 8a. Interestingly, there exists a positive correlation
between the generation diversity and the average switching
timing, which supports our hypothesis. Note that among
the models used in our analysis, only SD1.4 results are pro-
vided from StableBias. We additionally verify our claim
with common object images for more diverse models, i.e.,
five models used in our experiments.

We generate 100 images for each object we used for the ex-
periments (The list can be found in Table A.2) with prompts
“a photo of a [entity]”; hence, each attribute has 1,000
images. Then, we measure the CLIP similarity between the
generated images and the attributed prompts (i.e., “a photo
of a [attribute] [entity]”). Using this similarity
score, we compute the zero-shot prediction entropy of the
generated images to measure the generation diversity. We
use normalized entropy (i.e., −p log p

log d , where d is the dimen-
sion of p) to minimize the impact of the attribute numbers
(e.g., we have 10 colors and 6 shapes. This will change the
scale of their entropy).

In Figure 8b, we report the relationship between the gener-
ation diversity (measured by the normalized entropy) and
the early-determination timing (measured by the average
switching timing in Figure 4) for all model-attribute pairs.
Interestingly, we found a positive correlation between the
diversity and the early-determination timing. In other words,
if a model shows a more biased behavior to a specific at-
tribute, then the model will determine the main property
of the generated image conditioned by the biased attribute.
This again empirically supports our hypothesis.

Conclusion. In this section, we empirically show that
DNNs determine the major properties of their outputs at a
very early moment of inference (e.g., less than 5 for spe-
cific cues) with two scenarios (common objects as shown
in Figure 4 and human attributes as shown in Figure 6).
Furthermore, we show that this timing of the determination
is highly correlated to how the model is biased toward the
given cue in Figure 8 (e.g., when we generate images with
a more biased cue, such as color, the model determines the
output much earlier than a less biased cue, such as material).

5. Alternative Views
How can our claim be extended to non-iterative or non-
generative models? One opposing perspective can arise
from the specificity of our findings to diffusion models
(DMs). While DMs are an ideal case for studying iterative
inference processes, one may argue that the observations
from DMs would not generalize to other architectures. For
example, feedforward DNNs operate in a single forward
pass, lacking the iterative nature that DMs leverage. As a
result, the insights about early-stage determination or the
effects of determination timing may not translate to archi-
tectures that are fundamentally different in their inference
mechanisms. We recognize that our findings are grounded in
DMs, but we view these as a case study to explore broader
patterns that could inform future research across methods.

Another class of models worth considering is auto-
regressive (AR) models, such as language models (LMs).
Although their inference mechanism consists of multiple
forward passes, modifying conditions mid-inference (as we
did in DMs) is not straightforward in LM inference. Ad-
ditionally, evaluating generated texts in a controlled and
measurable way is inherently challenging. Due to these fac-
tors, we did not include AR models in our primary analysis.
While investigating early-stage determination in AR models
would be valuable, it falls outside the scope of this work.

Causality-aware models and concept bottleneck models
may show different behaviors. Another critique can arise
from the fact that certain models, such as concept bottleneck
models (Koh et al., 2020) or causal models (Kaddour et al.,
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2022), inherently rely on explicit intermediate concepts or
causal mechanisms to make decisions. These models are
designed to ensure that decision-making is interpretable
and structured in a way that is consistent across inputs. Un-
like the dynamic mechanisms described in this paper, these
models would not rely on early-stage “heuristics”. There-
fore, our analysis may not lead to the same result for these
models. However, these models are not universally adopted
across domains and most state-of-the-art models, hence, this
argument can be limited to a specific case. Furthermore,
we would assume that the mechanism for estimating the
intermediate concepts or causal nodes behaves similarly to
general DNNs, which would follow our hypothesis.

Bias would not work as heuristics. Finally, some critics
may argue that comparing DNN bias to “fast heuristics” of
human decision-making systems oversimplifies the nature
of machine learning models. While heuristic bias may be
a useful analogy, DNNs may operate on statistical patterns
in data, which can lead to biases that are not analogous to
human intuition. Specifically, many studies have argued that
a biased behavior by DNNs originated from a biased dataset
rather than their inherent property (Geirhos et al., 2020).
However, at the same time, some studies have suggested
that the bias can be easily happened due to the simplicity
bias (Scimeca et al., 2022). Namely, even now, the origin of
machine bias and its mechanism is known very little despite
their importance. In this paper, we do not directly suggest
the mechanism beyond the inference, but we try to reveal
the hidden behavior of DNNs; their outputs are determined
during a very early inference stage, and the timing of the
determination is correlated to how the model is biased. Iden-
tifying the actual mechanism will be an interesting future
direction. We will discuss this in Section 6.

6. Discussion
In this position paper, we claim that DNNs may determine
their outputs at the early stage of the inference process.
Additionally, we argue that the timing of this early deter-
mination may be influenced by biases inherent in the
model. In this section, we further explore the implications
of these claims and discuss how they provide new insights
and opportunities for improving DNNs.

Understanding the inner mechanism of DNN inference.
While the existing studies focus on the hierarchical fea-
ture extraction process (Zeiler & Fergus, 2014), our study
introduces a complementary perspective by focusing on
the “determination stage” during inference. Unlike prior
approaches, we hypothesize that DNNs may behave differ-
ently depending on the nature of their inputs, particularly the
complexity of the features. This suggests that the inference
process is not universally consistent but is dynamically mod-

ulated by the input. One possible interesting future research
direction could be a deeper understanding of the bias-related
mechanism. For example, as discussed by Scimeca et al.
(2022), this can be related to simplicity bias and the loss
surface when we introduce biased features.

A new lens for bias mitigation and “chain-of-thoughts”.
If, as we suppose, bias behaves as “fast heuristics” similar to
humans, we may devise a method to mitigate bias inspired
by human cognitive processes. For example, Haidt (2001)
observed that humans, when afforded the opportunity for
deliberation, shift from heuristic-driven decisions to more
rational and accurate reasoning. This insight aligns with
the concept of chain-of-thoughts (CoT) (Wei et al., 2022),
which enables large language models (LLMs) to engage
in complex reasoning by following incremental, step-by-
step logical prompts. Extending this analogy to DNNs, we
would propose encouraging models to adopt intermediate
reasoning steps during inference to reduce their reliance
on shortcuts or biased features. For instance, introducing
mechanisms that enforce iterative processing within gener-
ative models, such as multi-step deliberations in diffusion
processes, could promote deeper and more balanced rea-
soning. This approach not only offers a framework for bias
mitigation but also provides a new direction to better align
machine reasoning with human-like reflective processes,
improving both fairness and robustness in model outputs.

As a primitive study, we generate images with complex
prompts with multiple features. In many cases, a DM cannot
cover a complex prompt but only generates an image with
selective features, mostly biased cues. In Appendix B.3, we
show qualitative examples when we control the model in a
progressive manner, i.e., we start from the simplest one (e.g.,
“a photo of a pajama”) then we update the prompt (e.g., “a
photo of a checkered pajama”). We expect that this direction
can be helpful when a DM ignores a specific cue.

A new perspective on bias in inference mechanisms.
Bias in DNNs is often viewed as a flaw, but we may ar-
gue that “DNN bias is not a bug, but a feature”. Similar
to how humans rely on heuristics to make quick decisions
in familiar situations, DNN biases may enhance efficiency
when the given input is highly correlated with biased fea-
tures. Furthermore, if different architectures show different
biased behaviors (Naseer et al., 2021), leveraging diverse
models could lead to improved performance as shown by
Hwang et al. (2024). This idea parallels findings in human
decision-making, where groups with diverse individuals
tend to outperform even the best individual within the group
(Laughlin et al., 2006).

We expect that this new perspective on the role of bias in
inference can open a new direction for designing efficient
and strong inference mechanisms based on input property.
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Impact Statements
This work investigates the role of bias in deep neural net-
works (DNNs) and explores how certain biases may function
as efficient shortcuts in solving tasks. However, we strongly
caution against prematurely concluding that bias is inher-
ently beneficial, as such claims risk justifying discrimination
within machine learning (ML) systems. Our analysis does
not seek to justify biased decision-making but instead draws
an analogy between DNNs and human cognitive processes,
wherein heuristics serve as natural yet sometimes flawed
mechanisms for problem-solving (Kahneman, 2003). In any
case, our findings should not be used to justify biased or
discriminatory behaviors in ML models.

In our human attribute experiments, we use gender (male,
female, and non-binary) and ethnicity (Black, White, Asian,
and Hispanic) as attributes from StableBias (Luccioni et al.,
2024). We acknowledge that these categories are limited
and do not encompass the full diversity of human identities.
Additionally, certain attribute definitions may themselves be
inadequate or problematic. It is crucial to recognize that our
study may introduce biases, and any application or extension
of our results must carefully consider these limitations.

Furthermore, our findings suggest that some tasks may re-
quire deeper reasoning (e.g., more inference steps). How-
ever, this does not imply that simply increasing compu-
tational depth, such as slowing forward passes or using
more parameters, leads to fairer or less biased outcomes.
Specifically, our study cannot be used to justify that a more
computationally expensive model is inherently less discrim-
inatory. Bias in ML systems must be examined holistically,
considering both algorithmic properties and the broader so-
ciotechnical context. Overall, we encourage the ML commu-
nity to critically engage with these findings and to approach
bias-aware modeling with careful ethical considerations.
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Appendix

A. Experiment Design Details
A.1. Details of prompt altering for diffusion models with multiple modules

The Karlo UnCLIP model (Lee et al., 2022) has two separated modules, the prior module, and the decoder module, following
Dall-E 2 (Ramesh et al., 2022). The prior module generates an image latent vector from the given text latent vector (both are
extracted from CLIP (Radford et al., 2021)). After generating the image latent, the decoder module generates a pixel-level
image. Here, both prior and decoder modules of Karlo UnCLIP are diffusion models and take a text condition for each step.
We empirically observe that the decoder text condition also affects a lot to the generated image (i.e., the decoder does not
solely behave as “decoder”, but it also behaves as a generative model). However, to make our analysis consistent, we let the
decoder use the same text prompt ci while the prior module is controlled by our setting.

A.2. Full List of Attributes and Entities

Attribute type Attributes

Color black, blue, brown, gray, green, pink, purple, red, white, yellow
Pattern argyle, camouflage, checkered, herringbone, paisley, polka dots, stripes
Material fabric, glass, leather, marble, metal, plastic, stone, wood
Shape round, square, triangular, hexagonal, star-shaped, heart-shaped

Table A.1. Attribute details for scenario 1. For color attributes, we avoid the following highly similar pairs: (black, gray), (blue, green),
(blue, purple), (brown, red), (brown, yellow), (green, yellow), (pink, purple), (pink, red).

Attribute type Entities

Color car, crayon, bicycle, notebook, pen, balloon, t-shirt, shoe, cup, button
Material table, chair, bottle, vase, cup, bowl, box, shelf, bench, tray
Pattern shirt, dress, jacket, scarf, sweater, skirt, pants, tote bag, backpack, wallet
Shape cookie, mirror, clock, pendant, coaster, birthday card, vase, badge, ornament, cake

Table A.2. Entities for each attribute for scenario 1. For each attribute type, we choose ten objects minimally biased to the attribute.

Entity Entropy from StableBias (Luccioni et al., 2024)

singer 2.85
cleaner 2.51
aide 2.30
teacher 2.26
fast food worker 2.54
therapist 2.03
hairdresser 1.92
air conditioning installer 0.24
machinery mechanic 0.19
roofer 0.15
drywall installer 0.14
tractor operator 0.09
dental assistant -
nutritionist -
receptionist -
event planner -
childcare worker -

Table A.3. Entities for scenario 2. We choose seven most diverse professions and five least diverse professions, where the diversity
is measured by Stable Diffusion 1.4 (SD1.4), SD2, and Dall-E 2. We also include five low-diversity professions for SD1.4 whose
actual population includes more than 80% women, with SD1.4 exacerbating gender stereotypes, whereas these professions show higher
diversities in Dall-E 2 by over-representing male clusters (Luccioni et al., 2024).
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B. More experiments
B.1. More experimental results for Karlo UnCLIP decoder

As we described in Appendix A.1, the Karlo UnCLIP model consists of two parts and we only control the text condition of
the prior module. In this subsection, we show the results when we generate an image latent by the prior module with text
condition ci, and then generate the pixel-level image by the decoder module, with the alternation of the prompt as proposed
in our experiments. Figure B.1 and B.2 shows the results corresponding to the main results in the paper (i.e., Figure 4 and
Figure 6). We observe that a similar early determination somewhat happens in this scenario, even if the given latent is
already translated by the initial prompt ci.
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Figure B.1. Switching point for the Karlo UnCLIP decoder.
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Figure B.2. Cumulative histogram of the sample-wise switching timing for the Karlo UnCLIP decoder.

B.2. Example of generated images

We illustrate the generated images by altering the prompt from ci to ca in Figure B.3,B.4, B.5, B.6 and B.7. We can observe
that the generated images progressively change their appearance reflecting the prompt ci or ca.

B.3. Progressive diffusion steps by difficulty

In Figure B.8, B.9, and B.10, we show the examples when our progressive prompt altering helps to generate complex and
difficult prompts. Here we use complex prompts with two distinct features. For example, “a photo of gray zigzag jacket”
(Figure B.8) contains “gray” and “zigzag” attributes. We start with “a photo of jacket” and add “gray” and “zigzag” at
different timestamps. For example, we alter “a photo of jacket” to “a photo of gray jacket” and then we alter again the
prompt to “a photo of gray zigzag jacket”. The figures show the generated images for different altering timestamps for
each attribute. Interestingly, while the generated images only guided by the full prompt often fail to generate the desired
attribute. For example, Figure B.10 shows that the generated images guided by the original prompt (i.e., the most right below
images) fail to capture both color and shape. On the other hand, when we control the altering timing, the generated images
can capture both features without ignoring any of the features.
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Figure B.3. Generated samples.
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Figure B.4. Generated samples.
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Figure B.5. Generated samples.
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Figure B.6. Generated samples.
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Figure B.7. Generated samples.
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Figure B.8. Generated images with progressive diffusion steps (pattern). The most left top image is only guided by ci and the most
right bottom image is only guided by ca.

18



DNNs May Determine Major Properties of Their Outputs Early, with Timing Possibly Driven by Bias

ci = �A photo of a bench� + �purple�

+
 �

g
la

ss
�

t = 0 t = 3 t = 6 t = 9

t
 =

 9
t
 =

6
t
 =

 3
t
 =

 0

ci = �A photo of a cup� + �white�

+
 �

s
to

n
e�

t = 0 t = 3 t = 6 t = 9

t
 =

 9
t
 =

6
t
 =

 3
t
 =

 0

Figure B.9. Generated images with progressive diffusion steps (material). The details are the same as Figure B.8.

19



DNNs May Determine Major Properties of Their Outputs Early, with Timing Possibly Driven by Bias

ci = �A photo of a button� + �purple�

+
 �

fl
ow

er
-s

h
ap

ed
�

t = 0 t = 3 t = 6 t = 9

t
 =

 9
t
 =

6
t
 =

 3
t
 =

 0

ci = �A photo of a mirror� + �red�

+
 �

h
ea

rt
-s

h
a

pe
d

�

t = 0 t = 3 t = 6 t = 9

t
 =

 9
t
 =

6
t
 =

 3
t
 =

 0

Figure B.10. Generated images with progressive diffusion steps (shape). The details are the same as Figure B.8.
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