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Abstract

Large Vision-Language Models (LVLMs) demonstrate strong
performance on single-image tasks. However, we observe
that their performance degrades significantly when handling
multi-image inputs. This occurs because visual cues from dif-
ferent images become entangled in the model’s output. We re-
fer to this phenomenon as cross-image information leakage.
To address this issue, we propose FOCUS, a training-free and
architecture-agnostic decoding strategy that mitigates cross-
image information leakage during inference. FOCUS sequen-
tially masks all but one image with random noise, guiding
the model to focus on the single clean image. We repeat
this process across all target images to obtain logits under
partially masked contexts. These logits are aggregated and
then contrastively refined using a noise-only reference input,
which suppresses the leakage and yields more accurate out-
puts. FOCUS consistently improves performance across four
multi-image benchmarks and diverse LVLM families. This
demonstrates that FOCUS offers a general and practical solu-
tion for enhancing multi-image reasoning without additional
training or architectural modifications. Source code is avail-
able at https://github.com/yejipark-m/FOCUS

Introduction

Large Vision-Language Models (LVLMs) are designed to
jointly understand visual and textual information (Li et al.
2023a; Liu et al. 2023; Dai et al. 2023; Chen et al. 2024a;
Baietal. 2025; Li et al. 2024a; Achiam et al. 2023), enabling
them to perform a wide range of vision-language tasks, such
as Visual Question Answering (VQA) (Antol et al. 2015)
and Image Captioning (Herdade et al. 2019).

Although these successes have been largely achieved in
single-image settings, challenges still remain when extend-
ing these models to multi-image settings, where LVLMs ex-
hibit a notable performance drop (Wang et al. 2025b). We
observed that current LVLMs, when given multiple image
inputs, often fail to treat each image independently. Instead,
they mix visual cues across inputs, leading to a phenomenon
we term cross-image information leakage.

As illustrated in Figure 1 (a), a model can provide ac-
curate predictions when a single image is given. However,
when two images are given simultaneously, as in Figure |
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Figure 1: Illustration of cross-image information leakage in
LVLMs during single-image vs. multi-image inference.

(b), the model generates incorrect responses that conflate vi-
sual elements from both images. Specifically, while image A
contains “beer and bananas” and image B contains “banana
and coffee container”, the model mistakenly describes im-
age A as “beer, banana, and coffee container”, incorporating
irrelevant content from image B, and vice versa.

Why does cross-image information leakage happen? We
hypothesize that this problem arises since language models
(LMs) lack an explicit mechanism to separate visual seman-
tics across different images. LMs often entangle information
across inputs, generating outputs that mistakenly include un-
related content from different images. Our goal is to mitigate
this cross-image information leakage and to achieve a better
multi-image understanding of LVLMs.

Multi-image reasoning in LVLMs has been approached
through both training-based and inference-based methods,
yet key challenges remain in both. Training-based methods
(Awadalla et al. 2023; Lin et al. 2024; Sun et al. 2024; Jiang
et al. 2024) adopt interleaved image-text sequences to ex-
plicitly enhance multi-image reasoning capabilities. How-
ever, these methods require massive datasets (Laurengon
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etal. 2023; Li et al. 2024b) and computational resources, of-
ten hindering practical use and scalability (Jiang et al. 2024).

To avoid expensive training computation and budget,
there have been a number of works to improve image under-
standing in inference-time. For example, Tian et al. (2025)
tackled multi-image tasks by adjusting the causal attention
mask to reduce position bias. However, this method requires
an intensive architecture-level modification that should be
tailored to each model. As another line of work, inference-
time decoding strategies in LVLM have been studied by edit-
ing logits or hidden states during generation (Leng et al.
2024; Chen et al. 2024b; Park et al. 2025). However, these
methods are designed for single-image understanding and
are usually not able to be generalized to multi-image tasks.

In this paper, we aim to mitigate the cross-image informa-
tion leakage problem in a resource-efficient manner solely
using inference-time operations. Our key idea is to encour-
age the model to focus on each image individually rather
than processing all images simultaneously. To this end, we
propose FOCUS, a novel decoding strategy that leverages
a noise-guided image focusing technique. As illustrated in
Figure 2, we mask all but one image with random noise,
prompting the model to concentrate on the single clean im-
age. We sequentially perform multiple forward passes, each
time keeping one image clean, and aggregate the resulting
output logits while preserving the positional context of the
images. To suppress residual signals from the masked im-
ages, we perform an additional forward pass with an input
where all images are noise-masked to compute a reference
logit, which is subtracted from each output. This process
yields a logit distribution that more faithfully reflects the
model’s independent understanding of each image.

We validate FOCUS on three LVLMs across four multi-
image benchmarks: Winoground (Thrush et al. 2022),
VisMin-Bench (Awal et al. 2024), Mantis-Eval (Jiang et al.
2024) and MuirBench (Wang et al. 2025b). FOCUS achieves
consistent improvements, with the best gains of up to +32.1
Image and +29.9 Group score on VisMin, +18.8 Image and
+16.8 Group score on Winoground, +5.5%pts accuracy on
Mantis-Eval, and +1.5%pts on MuirBench each observed on
different model families. These gains are achieved without
any additional training or architectural changes, highlighting
the effectiveness and generalizability of our method.

Related Work

While LVLMs have achieved strong performance on stan-
dard single-image tasks (Chen et al. 2024a; Li et al. 2024a),
their ability to understand multi-image remains underdevel-
oped. Until recently, most open-source LVLMs (Dai et al.
2023; Liu et al. 2023; Zhu et al. 2024, Liu et al. 2024) were
trained under the assumption of single-image inputs, and
therefore struggle to generalize when presented with mul-
tiple images simultaneously (Wang et al. 2025b).

Prior Work on Multi-Image LVLMs. To address this
gap, several recent LVLMs (Awadalla et al. 2023; Sun et al.
2024; Laurencgon et al. 2023; Lin et al. 2024; Li et al. 2024b)
have been trained using large-scale interleaved image-text
datasets (Laurencon et al. 2023; Li et al. 2024b). For exam-

ple, Laurencon et al. (2023) comprises hundreds of millions
of interleaved image-text data that support multiple, con-
textually related images. While these approaches improve
multi-image understanding capabilities, they require exten-
sive training resources (Jiang et al. 2024) and suffer from
limited reusability and flexibility due to their reliance on
model-specific architectures. Training-free approaches that
modify model structure have also been explored. For exam-
ple, Tian et al. (2025) address position bias in multi-image
LVLMs, by altering the causal attention mask used during
auto-regressive generation. While effective at reducing po-
sitional preference, this method still requires model-specific
architectural modifications, which may complicate integra-
tion into existing model pipelines. In contrast, we focus on a
decoding strategy that requires no changes to a model.

Decoding Strategy. Methods focusing on decoding strat-
egy guide generation without additional training or architec-
tural changes. These approaches manipulate logits or hidden
states during inference to steer outputs toward desired prop-
erties (Li et al. 2023b; Malkin, Wang, and Jojic 2022; Shi
et al. 2024). Within LVLMs, several methods (Leng et al.
2024; Huang et al. 2024; Chen et al. 2024b; Wang et al.
2025a; Park et al. 2025; Chen et al. 2025; Suo et al. 2025;
Dong et al. 2025) have shown promising results in reducing
hallucination, but they have predominantly been developed
under single-image assumptions. To the best of our knowl-
edge, no prior work explicitly addresses or mitigates the
cross-image information leakage problem in multi-image
settings. Our work presents the first LVLM decoding method
specifically designed for multi-image understanding.

Motivation
Preliminaries

LVLMs are composed of a vision encoder ¢, and an auto-
regressive language model py. Given an input image I, the
model encodes it via the vision encoder as v = ¢,,(I), and
generates a textual output conditioned on both the image and
the text input X, as well as previously generated tokens y
where output sequence has length L.

L
ply [ v,2) = [ po(yr [ v, X, y<r) (D
t=1

When extending to N image inputs {I1,Io,...,In},
each image I; is independently encoded into visual to-
kens v; = ¢,(I;). These tokens are then concatenated as
[v1,...,vn] and processed by the py along with X. While
special tokens may indicate image boundaries, the model
still operates over a flattened sequence with positional em-
beddings.

Cross-image Information Leakage

While concatenated visual tokens [vy,vg, . .., vx] allow the
model to process multiple images simultaneously, they also
introduce a key limitation: cross-image information leakage.
This problem is connected with how visual inputs are em-
bedded and processed within LVLMs. LVLMs usually han-
dles multiple images as a sequence of visual tokens. These
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Figure 2: Overview of FOCUS. It consists of three main
steps: (a) visual masking, (b) image-wise focused inference,
and (c) contrastive aggregation.

visual tokens are then concatenated with text tokens and pro-
cessed by the attention mechanism. During attention opera-
tions, the tokens are highly influenced by inter-image causal
attention (Tian et al. 2025), resulting in a mingled represen-
tation in the latent space. A naive solution is to perform in-
ference independently for each image (i.e., single-image in-
ference). While this prevents the information leakage, it will
discard positional and relational instructions (e.g., “first im-
age”, “compare the second image with the first”), that are
essential for multi-image understanding tasks.

Method

Our method is a training-free decoding strategy that enables
LVLMs to concentrate on one image at a time while preserv-
ing positional structure of multi-image inputs. As shown in
Figure 2, our method consists of three steps: (a) visual mask-
ing, (b) image-wise focused inference, and (c) contrastive
aggregation. The full procedure is described in Algorithm 1.

Visual Masking (Figure 2a). First, we prepare the
masked image inputs using noise injection. Let N be the
number of input images. For each inference £ = 1,..., N,
we corrupt all images I; into I/ fori = 1,..., N, except for
the target image [;. This allows the model to treat the cor-
rupted images as masked and focus solely on a single clean
image, resulting in a partially masked input Z;:

T = [V], oy ks s U] Znoise = [V1, V% -+ s U],
2
where v/ denotes the noise-corrupted version of the visual
embedding ¢, (I]). We also define a fully noise-masked in-
put Zpise Which serves as a noise-only reference.

Image-wise Focused Inference (Figure 2b). We run N
inference passes, each using a partially masked image input

Algorithm 1: FOCUS

Input: Images I, ..., Iy, Text input X
Parameters: Noise scale )\, aggregation weight «
Models: Visual encoder ¢,,, Language model pg
Functions: noise(:,\)
Output: Sampled token y;

1: Initialize logits list F < [ ]

2: for k =1to N do

3: v+ ¢y(noise(l;,N\)) forall j # k

4 v < du(lk)
500 I [V Uy, U]
6 i po(ye | In, X, y<t)
7
8

Append fj, to F

: end for
9: v} + ¢y(noise(l;,N)) foralli =1to N
10: Zyoise < [V1,- - -, U]

11: fnoise < p@]gyt | Tnoises X, y<t)
12: fﬁnal — Ek:l(fi — Q- fnoise)

13: return y; ~ Sample( ffna)

Tk, where only the k-th image remains unmasked. The orig-
inal image order is preserved to retain positional semantics.
For each ¢, we compute the logit distribution:

fi :pe(yt | Ii7X7y<t)' (3)
Figure 2 (b) depicts the different logit distributions f; for
i =1,..., N obtained via focused inference. For example,

blue distribution (left) corresponds to the model focusing on
the first image, while the yellow one (middle) represents fo-
cus on the second image (i.e., the clean image in Z5). We
also compute a noise reference logit distribution using the
fully noise-masked input:

fnoise = Pe (yt | Thoises X, y<t)~ 4)

The gray logit distribution (right), containing no information
from either the first or the second image, serves as a refer-
ence for isolating irrelevant visual content during contrastive
aggregation. As a result, FOCUS performs N + 1 forward
passes in total.

Contrastive Aggregation (Figure 2c¢). Each f; contains
useful signals from the clean image I, but also includes
residual side-effects—e.g., nonzero values for irrelevant to-
kens like orange in Figure 2(b)—induced by the noise
masks. To suppress these residuals, we subtract the noise
reference logit fyoise from f; and aggregate the results:

N

fﬁnal = Z(fk 7a‘fn0ise)> (5)
k=1

where the hyperparameter « is a scaling hyperparameter
tuned via validation to appropriately weight the subtraction.
The final output token is then sampled from the aggregated
logits ffna. Figure 2(c) illustrates this step: the final green
logit distribution, computed using Equation (5), correctly

identifies beer as the answer.
This method effectively suppresses cross-image informa-
tion leakage while preserving positional structure, without



requiring any model training or architecture modification.
It enables LVLMs to better perform multi-image reasoning
tasks in a training-free, generalizable manner.

Cross-image Information Leakage Analysis

In this section, we empirically verify the severity of cross-
image information leakage in LVLMs. We follow the proto-
cols of Winoground (Thrush et al. 2022) and VisMin (Awal
et al. 2024) object category validation sets to test whether
the model can independently reason about each image.

Input Setup. For each image pair (I, I3), we define two
evaluation scenarios: (1) the model answers based only on
I, and (2) the model answers based only on I5. Each sce-
nario is tested under two conditions: a single-image setting
(only the target image is provided) and a multi-image setting
(both I; and I, are given as input).

Target task. For both single-image and multi-image set-
tings, we let an LVLM select the answer from the following
three options. (1) Target-specific caption (cr): A caption ac-
curately describes the target image. (2) Distractor caption
(cp): A caption describes the non-target image. (3) Merged
caption (cpr): A caption contains combined content from
both images, i.e., a merged description.

Ideally, the model should select cr depending on which
image is being queried (/; or I). If the model selects cpr
(which contains both I; and I5 information), this indicates
that both images influence the model and the model fails to
isolate the target image content. For example, suppose cr
is “There is a table below someone.” and cp is “There is
someone below a table.” Then, cj; becomes “There is a table
below someone, and there is someone below a table.” This
merged caption implies that there are two people, one on the
table and one under the table, which is factually incorrect if
each image depicts only one of the two situations.

Quantify Information Leakage. We quantify the amount
of cross-image information leakage based on the model’s
tendency to select the merged captions. Let Dy and D,, de-
note the sets of model predictions under the single-image
and multi-image settings, respectively. We define the selec-
tion ratio of cj; in the single-image setting (Rs) and the
multi-image setting (Ry,) as:

‘DS‘ ‘Dm‘

1

R, =
(6)

where 3 and ;" denote the model’s selected option for in-
stance ¢ under the single-image and multi-image conditions,
respectively, and 1[-] is the indicator function. In practice,
we use multiple-choice questions where each option corre-
sponds to “A”, “B”, and “C”, respectively.

Finally, the information leakage score C' is defined as:

C = Rn — R,. @)

A high information leakage score C' indicates that the
model is more likely to select the merged caption cjs in the

1
|Dslzl[y1s:CM]v Rm:mzl[y;n:cM]a
=1 1=1

Dataset simcLrp  Accs. Acem Ry BRm C
Winoground  0.74 71.0 515 99 193 94
VisMin 0.91 89.9 452 77 299 222

Table 1: Cross-image information leakage analysis for
Qwen2.5-VL-3B on Winoground and VisMin. We report ac-
curacy in single-image (Acc;) vs. multi-image (Acc,,) set-
tings (higher is better) as well as CLIP similarity (simcyip)
between two given images (/7 and I5) (higher denotes more
similar images). We also report the ratio of the merged cap-
tion (cpr) selection for single-image and multi-image de-
fined in Equation (6) (R and R,,, respectively). Finally, the
information leakage score C' (Equation (7)) is shown (higher
indicates a more severe leakage).

multi-image setting, implying that it struggles to disentan-
gle image-specific visual content and instead generates re-
sponses influenced by merged information of I; and /5.

As shown in Table 1, model accuracy consistently de-
clines when single-image to the multi-image setting, while
the frequency of selecting the merged caption (cps) in-
creases. In both datasets, R, exceeds R, indicating that the
model increasingly favors merged descriptions when multi-
ple images are presented—suggesting a tendency to confuse
visual information across inputs.

This information leakage appears more prominent in the
VisMin dataset (showing larger C'), which shows a higher
average CLIP similarity between paired images (0.91 vs.
0.74 in Winoground). Namely, when the images share more
semantic overlap, the information leakage becomes more se-
vere. These observations indicate that cross-image informa-
tion leakage tends to increase as the visual or semantic sim-
ilarity between input images grows.

Together, these findings empirically demonstrate that
LVLMs are susceptible to cross-image information leakage
in multi-image settings, and that the severity of this interfer-
ence correlates with image similarity.

Experiments
Benchmarks for Multi-image Understanding

Multi-image understanding has been a fundamental chal-
lenge in visual reasoning (Suhr et al. 2017, 2018). We em-
ploy four benchmarks to evaluate our method.

Winoground (Thrush et al. 2022) evaluates whether a
model can correctly associate captions with images or vice
versa. Each instance presents two images and two captions
(I1,T1), (I2,T>) with subtle differences, and the model
must assign the correct caption to each image.

VisMin (Awal et al. 2024) builds on this setup by focus-
ing on image-text pairs with minimal semantic differences.
It adopts the same evaluation format as Winoground, but tar-
gets finer-grained discrimination.

Evaluation metrics for Winoground and VisMin. We
adopt the generative LVLM evaluation protocol introduced



in Awal et al. (2024), which is designed to assess open-ended
generation by three metrics. (1) Text Score: For each in-
put set I, 71,75 and Is, T, 75, the model is prompted to
choose the caption that best matches the image. A point is
awarded only if the model selects the correct caption for both
inputs. This metric evaluates single-image caption ground-
ing. (2) Image Score: For each input set I, I5,7} and
11, I, T,, the model is prompted to select the image that best
matches the caption. A point is awarded only if the correct
image is chosen for both inputs. This metric evaluates com-
parative reasoning and primarily reflects multi-image under-
standing. (3) Group Score: A stricter metric that requires
both the Text Score and the Image Score to be correct. It re-
flects the model’s ability to reason consistently across both
single-image and multi-image contexts.

Mantis-Eval benchmark is released with the Mantis
model, covering 217 diverse topics such as size perception
and weight comparison. Each sample is carefully crafted by
annotators to require deep cross-image understanding. It in-
cludes both multiple-choice and short-answer formats.

MuirBench is a challenging benchmark that assesses 12
multi-image reasoning skills, including geographic under-
standing, diagram interpretation, and visual retrieval. It cov-
ers 10 types of inter-image relations (e.g., narrative, com-
plementary) and pairs each instance with a minimally al-
tered, unanswerable variant to test fine-grained discrimina-
tion. Mantis-Eval and MuirBench are evaluated by accuracy.

Implementation Details

Models. We evaluate the generalizability of our method
on three representative LVLM families: InternVL3 (2B,
8B) (Chen et al. 2024a), Qwen2.5-VL (3B, 7B) (Bai et al.
2025), and LLaVA-OneVision (0.5B, 7B) (Li et al. 2024a).
All models are evaluated in a frozen state without any
fine-tuning. Only the decoding phase is modified.

Decoding Setup. We use multinomial sampling with tem-
perature T' = 0.2.

Noise Masking. Each image v; is masked using additive
uniform noise as v, = (1 — A) - v; + A - U(0, 1), where A\ is
a hyperparameter that controls the degree of corruption. The
optimal noise type and scale are selected via validation.

Hyperparameter Tuning. All hyperparameters including
the noise type, noise scale A, and aggregation weight « are
selected per model and benchmark via validation. For Vis-
Min, we randomly sample a subset of the training set to con-
struct a validation split. For benchmarks without official val-
idation sets, we reserve 10% of the test data for this purpose.

More Details. All experiments are conducted using
NVIDIA A100 GPUs. Most evaluations are performed on
a single A100. For memory efficiency, we resize all Muir-
Bench images to 512 x 512.

Quantitative Results

We report test split performance on each benchmark.

Method InternVL3-2B InternVL3-8B

T I G T I G

Baseline | 47.25 6.25 450 | 70.75 40.75 34.25
+FOCUS | 4725 27.25 19.75 | 69.25 42.25 35.75

Method Qwen2.5-VL-3B Qwen2.5-VL-7B
T I G T I G
Baseline | 56.25 36.75 26.00 | 74.50 39.75 34.00

+FOCUS | 56.25 36.50 26.00 | 7450 58.50 50.75

Method LLaVA-OV-0.5B LLaVA-OV-7B

T I G T I G

Baseline 325 20.00 025 | 76.75 36.75 33.00
+FOCUS | 325 1925 0.75 | 76.75 48.50 42.25

Table 2: Winoground performance comparison across model
families and sizes with and without FOCUS. T: Text Score,
I: Image Score, G: Group Score. Bold: improved over base-
line. Underline: largest gain within model group.

Method InternVL3-2B InternVL3-8B

T I G T I G

Baseline | 79.39 1840 17.76 | 88.74 66.25 63.20
+FOCUS | 79.10 50.55 47.61 | 88.62 67.85 64.86

Method

Qwen2.5-VL-3B Qwen2.5-VL-7B
T I G T 1 G

Baseline | 84.76 37.41 3457 | 89.11 7295 69.26
+FOCUS | 8513 42.89 40.55 | 89.16 77.01 72.85

LLaVA-OV-0.5B LLaVA-OV-7B
T I G T I G

Baseline | 11.34 14.69 1.03 | 87.02 53.70 49.54
+FOCUS | 11.59 22.71 4.51 | 8693 61.01 55.70

Method

Table 3: Performance comparison across model families and
sizes with and without FOCUS on VisMin benchmark. T:
Text Score, I: Image Score, G: Group Score. Bold indicates
improvement over baseline. Underline highlights the largest
gain within each model group.

Result on Winoground. Table 2 reports Winoground per-
formance across three model famillies and scales, compar-
ing baseline decoding with FOCUS. Results are measured
identically with VisMin, reflecting the model’s ability to cor-
rectly match image and the text in multi-image setting. In
InternVL3-2B, FOCUS achieves a substantial gain in Image
Score from 6.25 to 27.25. For LLaVA-OV-7B, the Group
Score improves from 33.00 to 42.25, and the Image Score
increases by nearly 12%pts, confirming that FOCUS also
could enhance multi-image understanding performance in
models with larger parameter counts.

Result on VisMin. Table 3 shows the performance of FO-
CUS compared to baseline decoding using various models.



Model Family | InternVL | Qwen2.5-VL | LLaVA-OV

Size 2B 8B 3B 7B | 0.5B 7B
Baseline 49.77 64.98 | 5530 70.05 | 36.41 57.14
+ FOCUS 52.53 65.44 | 58.99 70.05 | 41.94 59.91

Table 4: Mantis-Eval accuracy across model families and
sizes, with and without FOCUS. Bold indicates improve-
ment over the baseline.

Model Family | InternVL | Qwen2.5-VL | LLaVA-OV

Size 2B 8B 3B 7B | 05B 7B
Baseline 28.42 31.62 | 30.38 29.92 | 22.85 28.88
+ FOCUS 27.46 31.88 | 31.31 29.73 | 24.38 29.73

Table 5: MuirBench accuracy across model families and
sizes, with and without FOCUS. MuirBench includes fine-
grained and unanswerable multi-image tasks. Bold indicates
improvement over the baseline.

Across all configurations, FOCUS consistently improves the
Image Score (I) and Group Score (G), which directly mea-
sure multi-image reasoning and balanced performance for
single and multi-image reasoning. The improvement is es-
pecially pronounced in smaller models, even in the same
LVLM family. For instance, as shown in the InternVL3-2B
case, FOCUS boosts the Image Score from 18.40 to 50.55
and the Group Score from 17.76 to 47.61, representing the
largest gains across all settings. These results suggest that
smaller models benefit significantly from inference-time fo-
cused decoding of visual inputs.

Result on Mantis-Eval. Table 4 shows Mantis-Eval ac-
curacy for six model variants. Across all settings, applying
FOCUS yields modest but consistent improvements.

For InternVL, the 2B model sees a +2.76%pts gain, while
the 8B model shows a smaller improvement. Qwen2.5-VL-
3B gains +3.69%pts. In the case of LLaVA-OV, the 0.5B
variant benefits notably, improving from 36.41 to 41.94.
These results indicate that while the overall accuracy im-
provements are modest in scale, they are meaningful given
the challenging nature of the benchmark. FOCUS consis-
tently improves or maintains performance across diverse
model architectures and sizes.

Result on MuirBench. Table 5 shows the perfor-
mance of models on MuirBench, a challenging bench-
mark for multi-image reasoning. FOCUS yields modest im-
provements across several configurations: Qwen2.5-VL-3B
+0.93%pts, LLaVA-OV-0.5B +1.53%pts, and LLaVA-OV-
7B +0.85%pts. While overall gains are limited, the results
suggest that FOCUS offers incremental benefits even in
complex and ambiguous multi-image settings.

Qualitative Results

Figure 3 compares baseline decoding with FOCUS. In (a),
the baseline incorrectly mentions both bananas and oranges,

(a) Noise Type (b) Noise Scale ()\) | (c) Weight (o)
Variant Acc. A Acc. « Acc.
Gaussianw. A 71.43 | 0.1 71.43 0.1 66.67
Impulse w. A 66.67 | 0.3 76.19 0.4 76.19
Uniformw. A 76.19 | 1.0 52.38 1.0 61.90

Table 6: Impact of FOCUS design choice: noise type, mask-
ing strength A, and contrastive weight . The Mantis valida-
tion accuracies using Qwen2.5-VL-7B are shown.

regardless of which image is queried. FOCUS, in contrast,
correctly describes only bananas for the first image and only
oranges for the second, showing a clear separation of visual
content. In (b), the baseline confuses elements from both im-
ages, referring to both doughnuts and sandwiches even when
asked about just one. FOCUS avoids this confusion and gen-
erates precise, image-specific descriptions. These examples
highlight how baseline decoding struggles to disentangle vi-
sual signals across multiple images, whereas FOCUS effec-
tively suppresses cross-image information leakage.

Ablation Study

We conduct an ablation study to assess each component in
FOCUS. All experiments are conducted on the Mantis val-
idation set using Qwen2.5-VL 7B. If not specified, we set
noise scale A = 0.3 and weighting o = 0.4.

Effect of Noise Type. In Table 6 (a), we compare three
types of noise: Gaussian, Impulse, and Uniform for mask-
ing non-target images during FOCUS inference. Although
all noise variants serve to suppress irrelevant image cues,
their effectiveness varies. Uniform noise yields the highest
accuracy at 76.19%. In contrast, Gaussian and Impulse noise
achieves comparatively lower accuracy.

Effect of \ (Noise Scale). Table 6 (b) reports the effect
of the noise strength A, which controls how much noise is
applied to non-target images. A low value A\ = 0.1 moder-
ately improves performance to 71.43%, but is insufficient to
fully suppress leakage. A high value A = 1.0 degrades per-
formance to 52.38% by overly corrupting the image. Our
default setting A = 0.3 yields the highest performance
at 76.19%, demonstrating that balancing semantic masking
and structural retention is key.

Effect of o (Weight). Table 6 (c) shows how varying the
contrastive weight a subtracting noise reference foise af-
fects performance. A small « = 0.1 achieves 66.67%, in-
dicating a benefit from incorporating the noise-only refer-
ence. Increasing « to 0.4 (our choice) leads to the best result
at 76.19%. However, setting a = 1.0 reduces performance
to 61.90%, likely due to over-suppressing the clean image
logits. This suggests that contrastive suppression should be
applied carefully to preserve essential signal while reducing
information leakage.



User

(a) Describe the first/second image.

Qwen2.5-VL

The image shows a woman standing a display of fruits,
specifically bananas and oranges. She is ...

The image depicts a vibrant and lively scene at an outdoor
market. A woman is standing behind a table filled with fresh
fruits, including bananas and oranges. She is ...

Qwen2.5-VL w/ FOCUS

The image depicts a woman standing behind a display of filled
with bunches of bananas. The bananas are ...

The image depicts a vibrant and lively market scene. In the
foreground, there is a woman standing behind a wooden crate
filled with bright orange oranges. She is ...

User

(b) Describe the first/second image.

Qwen2.5-VL

The image shows a plate of doughnuts and sandwiches.
The doughnuts come in various flavors ... The sandwiches ...

The second image shows a plate with sandwiches and
donuts on it. The sandwiches appear to be made with bread,
lettuce, and possibly other fillings, while the donuts ...

Qwen2.5-VL w/ FOCUS

In this center, there close filled with various assortment of
glazed donuts is prominently displayed in the foreground.

The image shows a close-up view of a plate with various
types of sandwiches and pastries. The sandwiches appear to
be made with different types of bread, ...

Figure 3: Qualitative samples using the Qwen2.5-VL 3B model. In both multi-image settings, the baseline decoding strategy
often produces a mixed information of the other image not indicated by the question. On the other hand, FOCUS disentangles
cross-image information well, resulting in a better multi-image understanding.

Comparison with a Noise-based Decoding Method

In this section, we compare VCD (Leng et al. 2024) with
our method on the multi-image understanding task. VCD
was originally proposed to mitigate hallucinations induced
by language priors, but among decoding-time methods, it is
the most comparable to ours. Specifically, VCD shares some
similarity with our method in that it also leverages noise-
masked images. However, the fundamental motivations of
the two approaches are entirely different. While VCD aims
to reduce hallucinated outputs by introducing noise to coun-
teract language-driven biases, FOCUS is designed to en-
hance multi-image understanding by forcing the model to
attend to one image at a time.

Since VCD was developed for single-image understand-
ing, we applied a slight modification to adapt it to multi-
image scenarios. Formally, the computation can be ex-
pressed as: forig +a- (forig - fnoise)a where forig denotes
the logits from the original multi-image input, and fjo;se de-
notes the logits from the same input with noise applied. This
calculation is performed using our fjs interface while re-
taining VCD’s original noise type (e.g., diffusion noise).

As shown in Table 7, our method consistently outper-
forms the modified VCD across all multi-image benchmarks
in terms of Image Score. This highlights the limitation of
directly applying a decoding method designed for single-

Model Size ‘ Method Winoground VisMin
Qwen2.5-VL-3B VCD variant 325 29.3
FOCUS (ours) 45.0 4.2
VCD variant 35.0 59.5
2.5-VL-7B
Qwen FOCUS (ours) 60.0 71.0

Table 7: Comparison of image scores between our method
and a VCD-style extension on a multi-image reasoning task.

image inputs to multi-image reasoning tasks.

Conclusion

This paper identifies underexplored limitation of LVLMs
in multi-image settings: cross-image information leakage
problem, where a model fails to disentangle visual infor-
mation from multiple images. We propose a novel training-
free decoding strategy that mitigates the problem without
any architecture modification or additional training. Our
method introduces a noise-guided image focusing decoding,
whereby non-target images are corrupted to encourage the
model to focus on a single image at a time. The resulting log-
its are then refined and aggregated through a contrastive logit
aggregation scheme, effectively isolating information from



each image while preserving positional context. We demon-
strate the effectiveness of our method on four multi-image
benchmarks using three LVLM families, showing consistent
improvements in multi-image reasoning. Ablation studies
confirm the impact of noise design, masking strength, and
contrastive weighting. Without altering model weights, our
method offers a practical and generalizable solution.
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