
Neural Hybrid Automata: Learning Dynamics with
Multiple Modes and Stochastic Transitions

Michael Poli1,3,∗, Stefano Massaroli2,∗, Luca Scimeca3, Seong Joon Oh3,
Sanghyuk Chun3,4, Atsushi Yamashita2, Hajime Asama2, Jinkyoo Park1, Animesh Garg5,6

Abstract

Effective control and prediction of dynamical systems often require appropriate
handling of continuous–time and discrete, event–triggered processes. Stochastic
hybrid systems (SHSs), common across engineering domains, provide a formalism
for dynamical systems subject to discrete, possibly stochastic, state jumps and
multi–modal continuous–time flows. Despite the versatility and importance of
SHSs across applications, a general procedure for the explicit learning of both
discrete events and multi–mode continuous dynamics remains an open problem.
This work introduces Neural Hybrid Automata (NHAs), a recipe for learning
SHS dynamics without a priori knowledge on the number of modes and inter-
modal transition dynamics. NHAs provide a systematic inference method based on
normalizing flows, neural differential equations and self–supervision. We showcase
NHAs on several tasks, including mode recovery and flow learning in systems with
stochastic transitions, and end–to–end learning of hierarchical robot controllers.

1 Introduction

Behaviors emerging from the interaction of continuous and discrete–time dynamics in the presence
of uncertainty are described through the language of stochastic hybrid systems (SHSs). Such discrete
events can bring along abrupt changes in the state, and in complex multi–mode systems, may also
cause a switch between system modes, and corresponding underlying continuous dynamics [1].
Communication networks [2], [3], where changes in communication protocol can happen at certain
levels of traffic congestion, and biological systems [4]–[6] are example domains where the SHS
modeling paradigm has proven fruitful.

Data–driven identification and learning of hybrid systems are known to be challenging due to the
entanglement of continuous flows and discrete events [7]; finding a generally applicable technique
remains an open problem, particularly in the common scenarios where no a priori knowledge on
the number and type of system modes is given. The aim of this work is to apply continuous neural
models [8]–[10] to the learning SHSs. We introduce a compact descriptive language for this task,
decomposing the system into a set of core primitives. Prior work is integrated into the framework,
highlighting in the process limiting assumptions and areas of further improvement.

To address the shortcomings of existing techniques, we introduce Neural Hybrid Automata (NHA)
as a general procedure designed to enable learning and simulation of SHSs from data. NHAs are
comprised of three components: a dynamics module, taking the form of an neural differential equation
(NDE) [8]–[10] capable of approximating a different vector field for each mode, a discrete latent
state tracking the internal mode of the target system, and an event module determining the time to
next event. In particular, our approach does not require prior knowledge on the number of modes.

∗Equal contribution. Author order was decided by flipping a coin. 1KAIST 2The University of Tokyo
3NAVER AI Lab 4 Naver Clova 5University of Toronto, Vector Institute 6Nvidia. Corresponding author:
Michael Poli (poli_m@kaist.ac.kr)

Preprint. Under review.

ar
X

iv
:2

10
6.

04
16

5v
1

 [
cs

.L
G

]
 8

 J
un

 2
02

1

The synergy among NHA components ensures a broader range of applicability compared to previous
attempts, which in example do not directly tackle multi–mode hybrid systems [11]–[14]. NHAs are
shown to enable mode recovery and learning of systems with stochastic transitions, with additional
applications in end–to–end learning of hierarchical robot controllers.

2 Background

We introduce required background on the formalism of stochastic hybrid systems (SHSs) and event
handling for their numerical simulation. We then provide further contextualization on previous
approaches, introducing in the process a unified language for SHS learning tasks.

2.1 Stochastic Hybrid Systems

A stochastic hybrid system (SHS) [2], [15] is a right-continuous stochastic process Xt taking values
in X ⊆ Rnx with a latent mode process Zt conditioning the dynamics of Xt, where t ≥ 0. Zt is
another right-continuous stochastic process that takes values in a finite set M of size m. In this
context, the set M contains identifiers of internal system modes. An event is defined as either a mode
switch or a state discontinuity (a jump in Xt), which can in some cases occur simultaneously. We
refer to times at which events z → z′ occur as random variables tk ∈ T , with associated intensity
functions [16]

λz→z′(t|Ht) ≥ 0.

where Ht := {tk ∈ T : tk < t} is the history of event times. Intensity, as defined in the classical
temporal point process (TPP) sense, can be interpreted as the expected number of events z → z′

within the time interval [t, t+ dt]. The dynamics for Xt when Zt = z is defined by

flow dynamics : ẋt = Fz(t, xt). (z, t, xt) ∈M× T× X
When a jump event z → z′ is triggered, Xt can instantaneously jump according to

jump dynamics : x+t = ψz→z′(t, xt). (z, z′, t, xt) ∈M2 × T× X
Jump maps ψz→z′ and intensities λz→z′ describe the behavior during events z → z′.

2.2 Event Handling for Hybrid Systems

Following [17], to enable forward simulation of SHSs, a convenient mathematical representation of
an event is a function g : T× X→ R which nullifies only at any event time t∗, thus providing the
differential equation integration algorithm with a termination or restart condition i.e.

t∗ is an event ⇔ g(t∗, xt∗) = 0. (2.1)

The particular form of g induces a jump set on D ⊂ T × X, D := {t, x : g(t, xt) = 0}, and
determines transitions from roots of g to regions of the state–space X where g 6= 0. Notably, this
construct enables utilization of root finding methods [18] in a neighborhood of t∗ to accurately zero
in on the event time.

The same simulation technique can be extended to the many jump sets case typical of multi–mode
systems, by equipping the condition function with identifiers z, z′ (gz→z′) which induces jump sets
Dz→z′ .
Simulating stochastic events While the event function approach appears to be limited to the
deterministic setting, it also subsumes stochastic events whose aleatoric uncertainty is encoded by
an intensity λ(t|Ht) [1], [13]. Without loss of generality let us consider a single intensity function
which is henceforth denoted as λ∗t := λ(t|Ht). Recalling that the cumulative distribution function

(CDF) of inter–event times is 1− exp
{
−
∫ t∗
t0
λ∗tdt

}
, standard inverse transform sampling [1], [19]

yields

t∗ : 0 = s− log

∫ t∗

t0

λ∗tdt, s ∼ Uniform(0, 1) (2.2)

as a special case of (2.1). Approaches developed for learning TPPs, including in the context of Neural
ODEs [8], [11], [20], introduce a parametric formulation for the intensity λ∗θ and optimize via direct
TPP likelihood objectives. The integral is in general intractable, thus these methods require either a
numerical approximation or the augmentation of additional states to compute it alongside the ODE.

2

z0start z1

z2

pz0→z1

pz0→z2 pz2→z2

pz1→z1

pz2→z1

ẋt = Fz(t, xt), t ∈ [tk, tk + τ)

Latent z

z0 z1

z2

pz0→z1

pz0→z2 pz1→z2

pz1→z1

pz2→z1

ẋt = Fz(t, xt), t ∈ [tk+1, tk+1 + τ)

Latent z

Dynamics module Event module Dynamics module

Event

tk+1 ← tk + τ

x+t ← ψz→z′(t, xt)

τ, z′ ← NextEvent(z)

Figure 1: Schematic of a Neural Hybrid Automata (NHA). The mode–conditioned Neural ODE Fz drives the
system forward until an event time tk+1 determined by a previous call to the event module. Then, the event
module determines time to next event and corresponding mode target z′ through sampling from normalizing
flow pz→z′ approximating densities of interevent times. A jump function is then applied to the state x, and
simulation continues with flow Fz′ .

2.3 Core primitives for SHS learning

At minimum, a learning model for SHSs necessitates several modules, each mirroring an element of
the formulation in 2.1. More specifically:

i. Dynamics module, to approximate continuous dynamics Fz conditioned on mode z.
ii. Discrete latent selector, to identify at each event time the latent mode z of the system.
iii. Event module, to determine when events happen, and how state x and latent state z are updated

after the transition.

Prior work considers specific instantiations of SHSs, leading to simplifying choices for each module
defined above. In example, switching systems without jumps, where iii. does not require jumps
[21], single mode systems, where ii. is not required and iii. does not need to determine latent
mode transitions [11], [13], [14], systems with known dynamics, where i. is not trained [13], or
systems with only deterministic events [7]. We note some of these works suffer from more than a
single of these limitations, including additional ones consequence of specific model choices. Direct
parametrization of the intensity, while a reasonable choice for single mode systems, requires state
augmentation scaling in the worst case as

(
m
2

)
[22] for a SHS with m modes. More importantly,

training parameters θ for such direct approaches is affected by the accuracy of the numerical method
employed for the solution of the integral in (2.2).

In this work, we introduce a modelling framework SHSs that does not rely on any of the simplifying
assumption on i., ii. and iii. outlined above. Furthermore, our method scales as O(m) in the number
of SHS modes.

3 Neural Hybrid Automata

We introduce Neural Hybrid Automata (NHA), a model for learning of SHSs. A NHA is comprised
of a dynamics module, a discrete latent state and an event predictor. A general overview of a NHA is
depicted in Figure 1. We start with a description of each module and their interconnections, followed
by a step–by–step procedure for NHA training.

Event module Intensity–free parametrizations for stochastic mode transitions allows NHAs to
sample next event times without solving integrals

∫
λ∗tdt for all target modes z′ reachable from

current z. From event k at time tk, NHAs determine next event times tk+1 through a conditional
normalizing flow modeling, for each possible pair of (z, z′), the density of corresponding inter–event
times τkz→z′ = tk+1 − tk, tk ∈ Tz→z′ . Let the intensity be a simple timer i.e λ̇ = 1. Further, let
pz→z′ be the parametrized conditional density obtained by the normalizing flow and let T (z, z′, tk)
be a collection of conditional samples from pz→z′ (one for each pair z, z′), i.e.

T (z, z′, tk) =
{
τkz→z′ ∼ pz→z′(τ |Htk)

}
z,z′∈Z

.

3

Flow Segmentation
identify events and segment flows

Flow and Mode Self–Supervision
flow–parallel self–supervised mode recovery

via flow reconstruction

Train Event and Jump
supervised training of parametrized

intervent time densities and jump maps.
Data labeled following transitions z → z′

determined during mode recovery

Simulate
simulate – predict

Eθ

z
Fz

Lr

τz→z′

(x, x+)

pz→z′

ψz→z′

system
trajectories

Figure 2: NHA training blueprint. Segmenting the trajectories enables self–supervised mode recovery via
trajectory reconstruction. The recovered mode labels are then used for NHA event module supervised training.

Using (2.2), we can thus sample an event given the current mode z and the previous event time tk as:

tk+1 = tk +min
z′∈Z

T (z, z′, tk). (3.1)

Note that the next mode z′ after the event is simultaneously obtained as z′ = argminT (z, z′, tk).
Sampling strategy (3.1), differently from (2.2), relies on the normalizing flow to explicitly model
the density rather than defining it implicitly through

∫
λ∗tdt. When event time tk is reached, a

parametrized jump map conditioned on (z, z′) is applied to the state x+ = ψz→z′(tk, x). Normalizing
flow pz→z′ and jump map ψz→z′ together define the full event module of an NHA.

It should be noted that (3.1) always samples the quickest–to–occur event from the normalizing flow,
which implies that no other event occurs between tk and tk+1. While the history can be compressed
into a fixed–length vector following [23] through application of sequence models e,g. RNNs, we note
that for hybrid systems equipped with deterministic events, providing (xtk , tk) as conditioning inputs
for pz→z′(τ) is sufficient since ODE solutions with deterministic transitions are uniquely determined
by the initial condition. Finally, deterministic events are a special case of stochastic events [2] that
can be well–represented with a Dirac δ function, of which the normalizing flow learns a smooth
approximation with continuous support.

Dynamics module To enable approximation of different mode–dependent vector fields, we
parametrize the flow map Fz(t, xt) of a SHS as a data–controlled neural ordinary differential
equation (Neural ODE) [9] with parameters ω, driven between each pair of event times tk, tk+1 by
discrete latent mode z

ẋt = Fz(t, xt, ω) t ∈ [tk, tk+1) (3.2)

Finiteness of admissible values in the latent mode state i.e. m ensures F is capable of approximating
a finite number of different vector fields, one for each mode. In particular, we consider one–hot
representations for latents z ∈ Rm. In batched data settings, (3.2) can be integrated in parallel
across nb batches of initial conditions xtk ∈ Rnb×nx with different modes, provided the latent is
also batched z ∈ Rnb×m. The combination of a given dynamics and event module, applied in turn
as depicted in Figure 1, enables simulation of trajectories of a SHS. We now describe their training
procedure.

4 Neural Hybrid Automata Module Training

Here, we detail the training procedure for each NHA component. Our only assumption is availability
to a trajectory segmentation routine tasked with separating the trajectories, or flows, into a collection
of subtrajectories Xi of potentially of different length, each produced by the system in a different
mode. The routine can be as simple as detection of discontinuities in the solution by inspecting finite–
differences of observations across timestamps [24], or involve additional steps such as change–point
detection [25]. Providing exact event times to NHAs is not required; the segmentation routine need
only partition the full dataset in n disjoint sets Xi s.t.

⋃
iXi = X and

⋂
iXi = ∅. In addition, no

knowledge of the number of modes, or topology of transitions between modes is made available to
NHAs, as these are rarely available in practice.

4

Self–supervised mode recovery The first stage of learning an NHA is designed to approximate the
continuous dynamics under each SHS mode while simultaneously identifying modes z. We achieve
this by framing subtrajectory reconstruction as a pretext task for mode recovery, via a reconstruction
objective Lr = 1

n

∑n
i=0 `r(Xi, X̂i), being X̂i subtrajectories reconstructed by the flow decoder Fz

via the model
z ∼ E(X, θ) t = tk
ẋ = Fz(t, xt, ω) t ∈ [tk, tk+1).

(4.1)

Here, a latent encoder E with parameters θ is tasked with extracting a latent mode state z ∈ M to
steer the decoder Fz towards a more accurate reconstruction. Representation limitations of Neural
ODEs [9], [26] ensure that to fit the above objective the the encoder E has to cluster the trajectories to
enable the data–control decoder to represent different vector fields for each system mode. Finiteness
of admissible values in the latent state is enforced by defining z as one–hot encoded sample from a
parametrized categorical distribution. Backpropagating through the sampling procedure is performed
via straight–through gradients [27]. System (4.1) can be regarded as an ODE trajectory autoencoder
with a categorical bottleneck.

Finally, we note that trajectory segmentation serves multiple purposes during NHA training. Forward
integration is significantly sped up since the ODE solves can now be parallelized across subtrajectories
Xi as independent samples of a batch of data, avoiding a sequential solve on full SHS trajectories.
The speedups can be dramatic for multi–mode SHSs2, the focus of this work, where data trajectories
may need to be longer to sufficiently explore different modes.

Event and jump supervision In addition to the learning of mode dynamics, self–supervised mode
recovery objectives provides direct supervision for normalizing flows pz→z′ and jump maps ψz→z′ .
More specifically, we collect times τkz→z′ and jump state pairs (x, x+) for each pair of modes (z, z′)
corresponding to a transition between pairs of subtrajectories clustered as z (first) and z′ (second)
by the encoder E . We then train the jump maps ψz→z′ to approximate x 7→ x+, and the mode
conditional normalizing flow to approximate the density pz→z′(τ).

∇ω0L ∇ω0L ∇ω1L

t∗k t̂k
t

ẋ = Fz=0(t, xt, ω) ẋ = Fz=1(t, xt, ω)

Figure 3: Conflicting gradient information in an ide-
alized 2–mode hybrid system due to overestimation of
event time.

Gradient pathologies in joint learning of
flows and events When attempting simulta-
neous learning on the full trajectory, the param-
eters of flow Fz can be subjected to wrong gra-
dients from reconstruction objectives, arising
from overreliance or underreliance of the flow
model on certain modes. This phenomenon can
bias training, and provides strong motivation
behind our segmentation–first approach, since
each subtrajectory Xi is associated only to a
single mode3.

A visualization is provided in Figure 3, through an idealized learning task of a two–mode system.
Overreliance of the flow model on mode z = 0, due to overestimation of event time tk, leads to a
decomposition of gradients∇w0

Lr; in green, gradients pushing the trajectory closer to the solution, in
red, incorrect gradients pushing the mode 0 trajectory further away from the ground–truth and closer
to a solution belonging to a different mode. Appendix A further develops theoretical considerations
on the nature of these gradients.

5 Results and Discussion

We evaluate Neural Hybrid Automata (NHA) through extensive experiments, with a focus on investi-
gating the performance and robustness of each NHA module. A summary of experiments, objectives
and ablations is provided here for clarity:

2While speedups are dependent on full trajectory and average subtrajectory lengths, in our experiment we
observe at least an order of magnitude (more than 20x) in wall–clock speedups for a single training iteration.

3Due to inaccuracies or noise in the segmentation algorithm, these partitions might not be perfectly separated
into different modes. We experimentally investigate these effects on NHA training in Appendix B.

5

Figure 4: [Left] Reconstruction of system trajectories through NHA vector field decoders Fz and corresponding
modes z encoded by E for Reno TCP. Although the encoder is initialized with more modes (10) than there are
in the underlying system (3), mode clustering is sparse and accurate. [Right] Flow reconstruction test MSE
for different classes of decoders. NHA decoders (10 modes) can reconstruct the flows as well as other NODE
baselines, with the added benefit of being able to recover mode labels during training.

• Reno TCP: we carry out a quantitative evaluation on quality of learned flows (mean squared
error) and quality of mode clusters recovered during self–supervision (v–measure). We also verify
the robustness of NHAs to overclustering and amount of data required for event module training.

• Mode mixing in switching systems: we highlight and varify robustness against mode mix-
ing, a phenomenon occurring during learning of multi–mode systems through alternative soft
parametrization of latent z, such as through softmax instead of categorical samples.

• Behavioral control of wheeled robots: NHAs enable task–based behavioral control. We investi-
gate a point–to–point navigation task where a higher level reinforcement learning (RL) planner
determines mode switching for a lower–level optimal controller.

5.1 System with Stochastic Transitions
ẋ1 = 0

ẋ2 = 0
start

ẋ1 = 1
ηnack

ẋ2 = x1
η

ẋ1 =
(log 2)x1
ηnack

ẋ2 = x1
η

1
τoff

pdropx1

η

κx1

η

κx1

η

pdropx1

η

(1)

(2)

(3)
(4)

(5)

Jumps (1) : {x1, x2} 7→ {0.693, 0}
(2) : {x1, x2} 7→ {0, 0}
(3) : {x1, x2} 7→ {0.5x1, x2}
(4) : {x1, x2} 7→ {0.5x1, x2}
(5) : {x1, x2} 7→ {0, 0}

Figure 5: Automata representation of TCP Reno,
where η, pdrop, κ > 0 and we set nack = 2. On
each edge is the corresponding intensity λz→z′ .

We apply NHAs to a dataset of internal state trajecto-
ries of a network transmission controller (TCP), the
Reno TCP scheme [2]. The system has two states,
five stochastic transitions and three modes as shown
through an automata representation in Figure 5. Here,
we qualitatively validate the performance of dynam-
ics and event modules of NHAs. We simulate 40
trajectories of the system, each 200 seconds long,
and segment them. No a priori knowledge on the
mode of each subtrajectory is provided to the model.
We perform self–supervised mode recovery to train
Fz and E , in the process labeling the subtrajectories,
then train event module normalizing flows and jump
functions with the mode labels obtained. Training and evaluation are performed using a 5–fold
cross–validation strategy, with a final test fold of 15. More details on the system, architectures and
data generation are reported in the Appendix B.

Mode recovery results First, we perform self–supervised mode recovery and verify (i) whether
the mode conditioned NHA decoder Fz offers test–time TCP trajectory reconstruction of equal or
better quality than other Neural ODE variants, and (ii) quality of the mode label clusters assigned
by the NHA encoder and robustness to different mumber of latent modes m. We measure (i)
via test mean squared error (MSE) on reconstructed trajectories, and (ii) via v–measure [28], a
metric taking values in [0, 1], computed as the harmonic mean between cluster completeness and
homogeneity. A v–measure of 1 indicates perfect clustering. As baselines, we collect for (i) the
performance of 3 Neural ODE (NODE) variants, a zero–augmented NODE, a data–controlled NODE
(DC–NODE) [9] where the latent z is the output of a multi–layer encoder, and a Latent NODE
where z is sampled via reparametrization of a Normal [8]. We also provide baseline performance
of a series of popular clustering algorithms tasked to cluster the subtrajectories: k–means++ [29],
hierarchical [30] and DBSCAN [31]. Figure 4 provides qualitative and quantitative results for
stage (i). As established by 1, NHA mode recovery outperforms all baselines by a wide margin,

6

Interevent τzi→zj densities learned from recovered mode clusters

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

t

D
en
si
ty

zi, zj = (0, 1)

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

t

zi, zj = (1, 0)

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

t

zi, zj = (1, 2)

pzi→zj(τ)

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

t

zi, zj = (2, 0)

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

t

zi, zj = (2, 2)

Figure 6: Learned densities (black) for intervent times τzi→zj . The normalizing flows are trained on times
recovered during the mode recovery stage, by clustering τzi→zj according to the encoder mode labeling. The
histogram depicts the ground–truth empirical distribution for each class of event.

with v–measure values close to 1. Surprisingly, we observe providing the NHA encoder with a
larger number of latent modes than the 3 of the system improves clustering results. Additional
details on data pre–processing, metrics and baseline design and tuning are provided in Appendix B.

v–measure ↑
Model m = 3 m = 5 m = 10

k–means++ 0.20± 0.02 0.24± 0.02 0.30± 0.06
hierarchical 0.23± 0.01 0.24± 0.01 0.31± 0.06
DBSCAN 0.66± 0.02 0.68± 0.02 0.69± 0.01

NHA 0.86± 0.02 0.91± 0.02 0.96± 0.03

Table 1: Quality of recovered mode clusters from NHA self–
supervised training and baseline clustering algorithms in the TCP
task. Hyperparameter m is the number of clusters provided to each
algorithm. For DBSCAN, values of m ∈ [3, 5, 10] map instead to
its primary parameter ε ∈ [0.1, 0.5, 1] [31].

Model Metric n = 1 n = 3 n = 5 n = 10

pz→z′ NLL ↓ 2.761 2.375 2.362 2.313
ψz→z′ MSE (10−3) ↓ 1.435 0.018 0.009 0.003

Table 2: Quality of fit for event module components, normalizing
flows p and jump maps ψ. Training performed with supervising
mode labels from n trajectories of TCP. We report test MSE and
negative log–likelihood (NLL) estimated from a base normalizing
flow model trained on ground–truth data from n = 500.

Event module results Next, we
leverage the mode labels recovered as
supervision for the event module of
an NHA. In all cases, we train three–
layer MLPs as jump maps and two–
layer spline flows [32] as normalizing
flows. Figure 6 visualizes the learned
densities for each stochastic transition
for the standard training regime of
n = 5 trajectories. We also perform
an ablative study on the quantity of
data required to extract sufficient su-
pervision signal for both components
of the event module. The results are
included in Table 1. We find that a
single trajectory is sufficient, with rel-
ative performance gains quickly drop-
ping off after n = 3.

5.2 Deterministic
Switching System

We investigate mode mixing in a three–
mode switching linear system (SLS) [13]. The deterministic nature of mode transitions, as well
as the absence of state jumps enables direct training of NHAs on data–trajectories without prior
segmentation. This allows us to perform an ablative study on mode mixing, a phenomenon arising
from latent modes z produced by the encoder E via soft alternatives to categorical samples, such as
by using softmax activations.

Mode mixing and overclustering We train NHAs on reconstruction of SLS trajectories. Each
encoder is provided, at initialization, one additional latent mode over the three of the system. The
conditioned flow Fz is constructed with three–layer MLPs. Rather than segmenting the data, we repeat
sampling for z at each integration step. Figure 7 shows the state space switching boundaries and mode
vector fields learned by an NHA and a baseline producing z via softmax rather than as categorical
samples. The additional freedom provided by softmax latents z ∈ R4

+,
∑
zi = 1 allows fitting

the trajectories by nonlinearly mixing different vector fields to approximate a single one. Instead,
categorical samples cannot mix the vector fields; this ensures that the learned clustering is either
sparse as shown in the Fig.7, or latent values dedicated to the approximation of the same underlying
mode dynamics are forced to learn the same vector field. Appendix B contains a visualization and
analysis for this second case.

In general, categorical sampling is effective when recovery of system modes is a model objective,
whereas softmax or other soft relaxations can be viable if only black–box fitting of data is desired.

7

0 2

−2
0

2

x

y

z1(x, y)

0 1

0 2

−2
0

2

x

y

z2(x, y)

0 1

0 2

−2
0

2

x

y

z3(x, y)

0 1

0 2

−2
0

2

x

y

z4(x, y)

0 1

Discrete Mode Selector: Categorical Samples z ∼ Categorical(Eω(x, y))

0 2

−2
0

2

x

y

z1(x, y)

0 1

0 2

−2
0

2

x

y
z2(x, y)

0 1

0 2

−2
0

2

x
y

z3(x, y)

0 0.9

0 2

−2
0

2

x

y

z4(x, y)

0 0.5

Discrete Mode Selector: Softmax Weighting z = Eω(x, y)

Figure 7: Reconstructed condi-
tional vector fields Fz and cor-
responding mode classification
boundaries in the state–space
of the LSS. [Above] Categor-
ical NHA encoder. [Below]
Mode classification performed
by "soft" encoder E capped
with a softmax activation.

5.3 End–To–End Learning of Hierarchical Switching Controllers for Dynamical Systems

Beyond SHS identification, the NHA framework enables learning of task–based hierarchical con-
trollers comprising a low–level controller uz := u(t, xt, z) dependent on the discrete mode z provided
by a higher–level policy π. Each NHA module is adapted as:

dynamics module: ẋt = F (t, xt, uz)dt low–level controlled system

event module: z′ ← π(t, xt, z) high–level planner
(5.1)

Within this context, latent state z can be regarded as a system set–point (e.g. a desired value of state x)
determined by the planning policy π to achieve a certain task, which the low–level controller has then
to carry out. Both π and uz are parametrized by neural networks, and the training is done end–to–end.
The obtained hierarchical control scheme is sample efficient, since system dynamics available a priori
are included in F . From the perspective of π, however, the dynamics are disentangled from the
planning objective. Indeed, the higher level policy need only learn how to set and switch between
objectives (z → z′), and not how to control the system to reach them. For this reason we train the
model using a loss function partitioned in two terms as L = Lu + Lπ .

Results We consider learning controllers for navigation of two-wheeled differential drive robots
[33]. The higher–level model–free policy π is here trained via REINFORCE gradients [34], [35] to

x1

x
2

Hierarchical robot control, test map 1.

x1

x
2

Hierarchical robot control, test map 2.

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000

0

2

4

L
o
ss
L u

Training curves of low–level and planner controller losses.

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000

20

40

60

80

Episodes

R
e
w
a
rd

s
−
L π

Figure 8: [Above]: Test–time learned navigation of swarms of differential drive robots. The robots are initialized
at random locations and orientations. [Below]: Training loss curves of low–level controller u and planner π
across episodes.

8

select the nearest resource target every 5 seconds. We set 5 different resources within a map, and train
all robots to: one, select the nearest resource target; two, drive the wheels to reach the target. The
training of both controllers is carried out concurrently, where target (or mode) selection is performed
by π, whereas the behavioural controller uz has to reach the target chosen by π via low–level steering
control inputs. As shown in Figure 8, convergence of both control policies occurs after around 4000
episodes of training. Figure 8 also visualizes the resulting navigation behavior at test–time on two
new resource layouts, where we alternate between two different sets of targets.

5.4 Generalizable Insights and Empirical Observations

The task of learning SHSs involves several moving components. Ablative experiments have been
performed to address specific questions on the robustness of NHAs. We detail some empirical
heuristics observed to improve performance, and report areas of further improvement.

• Overclustering stabilizes training We empirically observe providing NHA with more latent
modes than the system stabilizes training. We conjecture the additional choice allows the model
to use different modes during exploration without always conflicting with other already "assigned"
modes, phenomenon which is more frequent, in example, when the number of modes exactly matches
that of the system. In these cases, dropout in the encoder E appears to improve performance.

• Noisy segmentation of trajectories We investigate, for the TCP experiment, robustness of mode
recovery to incorrect segmentation (Appendix B) and number of NHA latent modes m (Table 1).
Extending NHAs to include a finetuning step for trajectory segmentation, in example leveraging ideas
from [13] might improve robustness of the segmentation routine and thus the overall approach.

6 Related Work
Hybrid system identification and Markov models Hybrid system identification is a relatively
recent development in dynamical system theory [7]. A majority of existing literature focuses on
(linear) piecewise affine systems (PWA) [36], [37]. [38] proposes a clustered symbolic regression
algorithm for learning input–output maps rather than dynamics. Existing approaches involving
continuous optimization [21] do not consider event stochasticity and mode recovery. Identification of
SHSs is an even smaller field, with limited success outside specific cases [15].

Continuous–depth and contact models Neural differential equations and continuous–depth mod-
els, initially concerned with unimodal systems [8], [9], have seen preliminary application to the
learning of temporal point processes [11], [39]. Although some of these works tackle stochastic
events and marked point processes, multimodality and explicit learning of the flows is not considered.
[12] examine interventions as events, and develop a continuous architecture for modeling the lasting
effect of a given intervention on the dynamics. Differentiable contact approaches [14], [40] introduce
physics–compatible models designed to recover deterministic hybrid dynamics of mechanical systems
from data. [13] develops, through implicit differentiation, a method for direct optimization of event
times. Although Neural Event ODEs do not directly address multimodality, a potential synergy
between the approach of [13] and NHAs could preserve the advantage of our flow–parallel mode
recovery, namely integration speed and sidestepping of gradient pathologies outlined in Section IV.
Section 2.3 provides a summary of limitations for these existing methods.

7 Conclusion

Hybrid systems represent a versatile and general class of systems, with applications across engineering
disciplines [15]. In this work, we investigate challenges related to the learning of SHSs from data
and introduce Neural Hybrid Automata (NHA), a step–by–step method leveraging neural differential
equations, density estimation and self–supervised system mode recovery. NHAs are shown to be
effective in various settings, including flow and event learning in systems with stochastic transitions.

9

References

[1] C. G. Cassandras and J. Lygeros, Stochastic hybrid systems. CRC Press, 2018.
[2] J. P. Hespanha, “Stochastic hybrid systems: Application to communication networks,” in

International Workshop on Hybrid Systems: Computation and Control, Springer, 2004, pp. 387–
401.

[3] G. Sun, C. G. Cassandras, Y. Wardi, C. G. Panayiotou, and G. F. Riley, “Perturbation analysis
and optimization of stochastic flow networks,” IEEE Transactions on Automatic Control,
vol. 49, no. 12, pp. 2143–2159, 2004.

[4] R Alur, C Belta, F Ivancic, V Kumar, M Mintz, G Pappas, H Rubin, J Schug, and G. Pappas,
“Hybrid modeling and simulation of biological systems,” Hybrid Systems: Computation and
Control, vol. 2034, pp. 19–32, 2001.

[5] J. P. Hespanha and A. Singh, “Stochastic models for chemically reacting systems using
polynomial stochastic hybrid systems,” International Journal of Robust and Nonlinear Control:
IFAC-Affiliated Journal, vol. 15, no. 15, pp. 669–689, 2005.

[6] X. Li, O. Omotere, L. Qian, and E. R. Dougherty, “Review of stochastic hybrid systems with
applications in biological systems modeling and analysis,” EURASIP Journal on Bioinformatics
and Systems Biology, vol. 2017, no. 1, pp. 1–12, 2017.

[7] F. Lauer and G. Bloch, “Hybrid system identification,” in Hybrid System Identification,
Springer, 2019, pp. 77–101.

[8] T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, “Neural ordinary differential
equations,” in Advances in neural information processing systems, 2018, pp. 6571–6583.

[9] S. Massaroli, M. Poli, J. Park, A. Yamashita, and H. Asama, “Dissecting neural odes,” arXiv
preprint arXiv:2002.08071, 2020.

[10] C. Rackauckas, Y. Ma, J. Martensen, C. Warner, K. Zubov, R. Supekar, D. Skinner, and A.
Ramadhan, “Universal differential equations for scientific machine learning,” arXiv preprint
arXiv:2001.04385, 2020.

[11] J. Jia and A. R. Benson, “Neural jump stochastic differential equations,” in Advances in Neural
Information Processing Systems, 2019, pp. 9843–9854.

[12] D. Gwak, G. Sim, M. Poli, S. Massaroli, J. Choo, and E. Choi, “Neural ordinary differential
equations for intervention modeling,” arXiv preprint arXiv:2010.08304, 2020.

[13] R. T. Chen, B. Amos, and M. Nickel, “Learning neural event functions for ordinary differential
equations,” arXiv preprint arXiv:2011.03902, 2020.

[14] Y. D. Zhong, B. Dey, and A. Chakraborty, “A differentiable contact model to extend la-
grangian and hamiltonian neural networks for modeling hybrid dynamics,” arXiv preprint
arXiv:2102.06794, 2021.

[15] C. G. Cassandras and J. Lygeros, “Stochastic hybrid systems,” Automation and Control
Engineering, vol. 24, 2007.

[16] D. J. Daley and D. Vere-Jones, An introduction to the theory of point processes: volume II:
general theory and structure. Springer Science & Business Media, 2007.

[17] L. Shampine and S Thompson, “Event location for ordinary differential equations,” Computers
& Mathematics with Applications, vol. 39, no. 5-6, pp. 43–54, 2000.

[18] J. Nocedal and S. Wright, Numerical optimization. Springer Science & Business Media, 2006.
[19] J. G. Rasmussen, “Temporal point processes: The conditional intensity function,” Lecture

Notes, Jan, 2011.
[20] R. T. Chen, B. Amos, and M. Nickel, “Neural spatio-temporal point processes,” arXiv preprint

arXiv:2011.04583, 2020.
[21] F. Lauer, G. Bloch, and R. Vidal, “A continuous optimization framework for hybrid system

identification,” Automatica, vol. 47, no. 3, pp. 608–613, 2011.
[22] D. B. West et al., Introduction to graph theory. Prentice hall Upper Saddle River, 2001, vol. 2.
[23] O. Shchur, M. Biloš, and S. Günnemann, “Intensity-free learning of temporal point processes,”

arXiv preprint arXiv:1909.12127, 2019.
[24] S. Massaroli, F. Califano, A. Faragasso, M. Risiglione, A. Yamashita, and H. Asama, “Identifi-

cation of a class of hybrid dynamical systems,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 875–
882, 2020.

10

[25] S. Aminikhanghahi and D. J. Cook, “A survey of methods for time series change point
detection,” Knowledge and information systems, vol. 51, no. 2, pp. 339–367, 2017.

[26] E. Dupont, A. Doucet, and Y. W. Teh, “Augmented neural odes,” in Advances in Neural
Information Processing Systems, 2019, pp. 3134–3144.

[27] Y. Bengio, N. Léonard, and A. Courville, “Estimating or propagating gradients through
stochastic neurons for conditional computation,” arXiv preprint arXiv:1308.3432, 2013.

[28] A. Rosenberg and J. Hirschberg, “V-measure: A conditional entropy-based external cluster
evaluation measure,” in Proceedings of the 2007 joint conference on empirical methods in
natural language processing and computational natural language learning (EMNLP-CoNLL),
2007, pp. 410–420.

[29] D. Arthur and S. Vassilvitskii, “K-means++: The advantages of careful seeding,” Stanford,
Tech. Rep., 2006.

[30] F. Murtagh and P. Contreras, “Algorithms for hierarchical clustering: An overview,” Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 2, no. 1, pp. 86–97,
2012.

[31] D. Birant and A. Kut, “St-dbscan: An algorithm for clustering spatial–temporal data,” Data &
knowledge engineering, vol. 60, no. 1, pp. 208–221, 2007.

[32] C. Durkan, A. Bekasov, I. Murray, and G. Papamakarios, “Neural spline flows,” arXiv preprint
arXiv:1906.04032, 2019.

[33] S. K. Malu and J. Majumdar, “Kinematics, localization and control of differential drive mobile
robot,” Global Journal of Research In Engineering, 2014.

[34] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press, 2018.
[35] J. Peters and S. Schaal, “Policy gradient methods for robotics,” in 2006 IEEE/RSJ International

Conference on Intelligent Robots and Systems, IEEE, 2006, pp. 2219–2225.
[36] S. Paoletti, A. L. Juloski, G. Ferrari-Trecate, and R. Vidal, “Identification of hybrid systems a

tutorial,” European journal of control, vol. 13, no. 2-3, pp. 242–260, 2007.
[37] R. L. Westra, M. P. Ralf, and L. Peeters, “Identification of piecewise linear models of complex

dynamical systems,” IFAC Proceedings Volumes, vol. 44, no. 1, pp. 14 863–14 868, 2011.
[38] D. L. Ly and H. Lipson, “Learning symbolic representations of hybrid dynamical systems,”

The Journal of Machine Learning Research, vol. 13, no. 1, pp. 3585–3618, 2012.
[39] Y. Rubanova, T. Q. Chen, and D. K. Duvenaud, “Latent ordinary differential equations for

irregularly-sampled time series,” in Advances in Neural Information Processing Systems, 2019,
pp. 5321–5331.

[40] A. Hochlehnert, A. Terenin, S. Sæmundsson, and M. Deisenroth, “Learning contact dynam-
ics using physically structured neural networks,” in International Conference on Artificial
Intelligence and Statistics, PMLR, 2021, pp. 2152–2160.

[41] A. L. Mitchell, M. Engelcke, O. P. Jones, D. Surovik, S. Gangapurwala, O. Melon, I. Havoutis,
and I. Posner, “First steps: Latent-space control with semantic constraints for quadruped
locomotion,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), IEEE, 2020, pp. 5343–5350.

[42] Y. D. Zhong and N. Leonard, “Unsupervised learning of lagrangian dynamics from images for
prediction and control,” Advances in Neural Information Processing Systems, vol. 33, 2020.

[43] A. M. Johnson, S. A. Burden, and D. E. Koditschek, “A hybrid systems model for simple
manipulation and self-manipulation systems,” The International Journal of Robotics Research,
vol. 35, no. 11, pp. 1354–1392, 2016.

[44] P. Holmes, R. J. Full, D. Koditschek, and J. Guckenheimer, “The dynamics of legged lo-
comotion: Models, analyses, and challenges,” SIAM review, vol. 48, no. 2, pp. 207–304,
2006.

[45] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale
hierarchical image database,” in 2009 IEEE conference on computer vision and pattern
recognition, Ieee, 2009, pp. 248–255.

[46] E. Bingham, J. P. Chen, M. Jankowiak, F. Obermeyer, N. Pradhan, T. Karaletsos, R. Singh,
P. Szerlip, P. Horsfall, and N. D. Goodman, “Pyro: Deep universal probabilistic programming,”
The Journal of Machine Learning Research, vol. 20, no. 1, pp. 973–978, 2019.

11

[47] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P.
Prettenhofer, R. Weiss, V. Dubourg, et al., “Scikit-learn: Machine learning in python,” the
Journal of machine Learning research, vol. 12, pp. 2825–2830, 2011.

[48] J. R. Dormand and P. J. Prince, “A family of embedded runge-kutta formulae,” Journal of
computational and applied mathematics, vol. 6, no. 1, pp. 19–26, 1980.

12

Neural Hybrid Automata
Supplementary Material

Table of Contents
A Additional Discussion and Theory 13

A.1 Neural Hybrid Automata: Modules and Hyperparameters 13

A.2 Gradient Pathologies . 14

A.3 Extensions and Limitations . 15

A.4 Detailed Feature Comparisons with Related Work 15

A.5 Broader Impact . 16

B Experimental Details 16

B.1 Identification of Reno TCP . 17

B.2 Robustness to Segmentation Noise . 18

B.3 Switching Linear System and Mode Mixing . 18

B.4 End–To–End Learning of Hierarchical Controllers for Dynamical Systems 19

C Realization of NHAs 20

C.1 Software Implementation of Hybrid Integration 20

A Additional Discussion and Theory

A.1 Neural Hybrid Automata: Modules and Hyperparameters

We provide a notation and summary table for Neural Hybrid Automata (NHA). The table serves as a
quick reference for the core concepts introduced in the main text.

1. Dynamics: tasked with approximating continuous dynamics of each mode by conditioning a
Neural ODE on mode z.

2. Mode Encoder: only used during self–supervised mode recovery. Labels every subjtrajectory
Xi with a mode z to ensure mode–conditioned decoder Fz can reconstruct it despite Neural
ODE representation limitations (uniqueness of solutions given an initial condition).

3. Event Module: determines during simulation (i) when events happen, and what types of
events i.e. mode transitions (z → z′) through pz→z′ , (ii) what happens during such events
i.e. jumps on the state via ψz→z′ . Normalizing flow pz→z′ is trained to approximate densities
p(τz→z′ |H).

The only NHA hyperparameter beyond module architectural choices is m, or number of latent modes
provided to the model at initialization. Performance effects of changing m have been explored in
Section 5.2 and Appendix B.2. Appendix B.2 further provides analyzes potential techniques to prune
additional modes.

13

Neural Hybrid Automata Modules

Dynamics: ẋ = Fz(t, xt, ω) t ∈ [tk, tk+1)

Mode Encoder: z ∼ E(X, θ) t = tk

Event Module: ψz→z′ , pz→z′

z latent mode (one–hot)
X collection of subtrajectories
{tk} event times

θ encoder parameters
ω Neural ODE parameters
Fz mode–controlled Neural ODE

ψz→z′ jump networks
pz→z′ normalizing flows

A.2 Gradient Pathologies

We provide some theoretical insights on the phenomenon of gradient pathologies with the simple
example of a one–dimensional linear hybrid system with two modes and one timed jump,

ẋt =

{
axt t < τ
bxt t >= τ

t 6= τ

x+t = cxt t = τ

(A.1)

We let the system to evolve in a compact time domain T = [0, 1] such that τ ∈ T. Given an initial
condition x0 ∈ R, the solution x1 can be obtained as follows

xτ = eaτx0 1. integrate 1st flow until t = τ

x+τ = cxτ = ceaτx0 2. at t = τ apply jump

x1 = eb(1−τ)x+τ = ceb(1−τ)eaτx0 = ceaτ+b(1−τ)x0 3. integrate 2nd flow from t = τ to t = 1
(A.2)

Alternatively, we can compactly write the solution at any time t ∈ T as

xt =

{
eatx0 t < τ

ceaτ+b(t−τ)x0 t ≥ τ (A.3)

Using the previous equation we can compute the gradient of solutions w.r.t. the parameters a, b, c, τ .
In particular, we have

dxt
da

=

{
teatx0 t < τ

τkeaτ+b(t−τ)x0 t > τ

dxt
db

=

{
0 t < τ

(t− τ)keaτ+b(t−τ)x0 t > τ

dxt
dc

=

{
0 t < τ

eaτ+b(t−τ)x0 t > τ

dxt
dτ

=

{
0 t < τ

(a− b)keaτ+b(t−τ)x0 t > τ

(A.4)

Now let us consider a loss function computed on the mesh solution points of the trajectory

L =

K∑
k=1

γ(xts), 0 < t1 < · · · < tS < 1, ts 6= τ

of which we wish to obtain the minimizers a∗, b∗, c∗, τ∗ via e.g. application of gradient descent
methods. The gradient of the cost function w.r.t. any of the parameters θ ∈ {a, b, c, τ} is given by

dL

dθ
=

S∑
k=1

dγ(xts)

dx

dxts
dθ

.

Simultaneous estimation of both the optimal dynamic parameters a∗, b∗, c∗ and a randomly initialized
event time τ∗, will result in gradients of certain parameters to vanish or be completely incorrect.

Specifically, we note that parameter τ determines, beyond the specific time when the jump event
occurs, also which parameters are responsible for computation of solution points xts . Consider

14

the following two scenarios, where mode 1 is the first vector field of (A.1) and 2 is the second
(post–event):

(1) Initialization of τ is an over–estimation of τ∗ at the beginning of training. If this is the case, for
ts such that τ > ts > τ∗ the mode is missclassified i.e. should be 2, but is still 1 due to the delayed
event time τ . The gradient w.r.t b of loss computed on solution points xtk , τ > ts > τ∗ is then
wrongfully set to zero.

(2) τ is an under–estimation of τ∗. The same reasoning applies, except that for τ∗ > ts > τ the
mode is misslassified to 2, although it should be 1. This, in turn, affects the gradients for b, which
results different than 0 despite the fact that b, from (A.1) should not be affecting the solution at points
ts < τ∗. Any value taken by this gradient is thus incorrect, and can greatly affect the optimization
procedure

We have shown how gradient pathologies exist even in the idealized linear case. In nonlinear systems
with multiple events (including stochasticity) these effects can have a great empirical effect on a
training procedure. The trajectory segmentation first approach of NHAs is designed to minimize their
impact.

A.3 Extensions and Limitations

Automata reconstruction via symbolic regression NHAs with categorical encoders recover
either a representation using the minimum number of modes necessary, corresponding to those of the
system, or can be pruned due to immunity to mode mixing (discussed in Appendix B.3).

This property allows application of symbolic regression (SR) to reconstruct an analytic expression
for each differential equation driving a system mode. This step grants domain experts a method to
validate and certify the results, and enables construction of a human–readable automata representation
for the SHS.

Clustered SR results can be improved by leveraging the universal differential equation approach
employed in example by [10] for unimodal differential equations, by utilizing the decoder Fz as an
interpolating source of additional trajectory data for each mode.

Latent hybrid automata from observations Learning methods for dynamical systems often in-
troduce structure in latent space to enable control and identification from raw observations [41], [42].
Practical application for hybrid systems, such as robotic manipulation [43], locomotion [44], and
traffic networks [2], might benefit from learning models structurally equipped with latent NHAs.

Optimal design of NHA modules for latent applications remains a difficult open question, as the
analysis of deep models with latent spaces designed to evolve in continuous–time is also in its infancy.

Unified benchmark for model development Despite the importance of hybrid systems in engi-
neering, wide differences in techniques across domains have historically made it difficult to develop
and preserve a unified set of benchmarks.

Evidence from other deep learning disciplines e.g. computer vision highlights the importance of
consistent and curated benchmark datasets to track and measure the impact architecture and method
optimizations. We argue further benchmark design, along with larger datasets, to be a necessary
step required to trigger an ImageNet–like [45] moment for general neural differential equations and
thus also NHAs. As an additional challenge, we note that performance of continuous neural models
is in general highly impacted by the numerical method used for forward and backward inference,
with optimal methods usually system or application dependent. This makes decoupling architecture
improvements from the numerical underpinnings harder than for traditional models.

A.4 Detailed Feature Comparisons with Related Work

Table 3 compares the proposed method with recent learning based approaches in terms of features.
We use 7 for features that are either absent or incompatible with a given method, or features that have
not been tested or verified, although the method itself may be adapted to include it.

We consider the following:

15

• Recovery of flows and events: can state–space vector fields be learned along with the events.
In [11], learned latent dynamics aid in the intensity parametrization of the point process.
State–space dynamics are not learned simultaneously with point process maximum likelihood
training. [13] trains a neural network vector field along with a parametrized event function.

• Stochastic events: has the method been shown to be compatible with stochastic events. The
formulation of [13] can parametrize stochastic events via inverse sampling, but no experiments
have been performed, likely due to difficulties in learning stochastic events from a full
trajectory.

• Mode identification: does the method recover modes of a multi–mode hybrid system, and
can the vector field approximate a different dynamics for each. NHAs are the first method to
tackle this setting.

• Adaptive end–time: can the method adjust event times by calculating gradients with respect
to integration end–times. Core contribution of [13] is an implicit differentiation formulation
to adapt end-times. While adaptive segmentation has been discussed as being compatible with
NHAs, no targeted experiments on this technique have been carried out. The extension is left
as future work.

• Intensity–free parametrization: does the method use intensity–free parametrizations to
avoid numerically solving integrals to sample from next–event densities. [11], [13] parametrize
the intensity as only a single mode is considered. NHA use normalizing flows to approximate
these densities directly, since intensity parametrization scale poorly as the number of system
modes increases.

A.5 Broader Impact

This work represents a first attempt in developing a data–driven, learning based technique for stochas-
tic hybrid system (SHS) identification and control. As discussed in the main text, existing methods
currently rely on strict assumptions that severely limit their utilization in practice. Applications
domain the SHS formalism provides an accurate language to describe a target system are most likely
to be affected by the availability of NHAs as a method to improve partial mathematical models using
data or construct from scratch a model of the system and its automata representation. The impact
of NHAs here is thus likely to be similar in scope to the impact of neural differential equations in
science and engineering.

We do not anticipate significant negative environmental impact from the adoption of NHAs as these
models are still orders of magnitude smaller than other large deep learning architectures for domains
such as natural language.

B Experimental Details

Hardware and software resources Experiments have been performed on a workstation equipped
with a 48 threads AMD RYZEN THREADRIPPER 3960X, a NVIDIA GEFORCE RTX 3090
GPUs and two NVIDIA RTX A6000. All models and datasets fit in a single GPU. The software
implementation of NHA leverages the PyTorch framework. ODE solvers and numerical methods for
hybrid systems have been developed from scratch and are included in the submission.

Common experimental settings In all experiments, unless specified, the NHA mode encoder Eθ
is capped with a softmax activation computing the probabilities of a categorical distribution from
which then the one–hot mode z is sampled.

Method Recovery of Stochastic Mode Adaptive Intensity–free
flow + events events identification end–time parametrization

NJSDE [11] 7 X 7 X 7
Neural Event ODE [13] X 7 7 X 7

NHA (this work) X X X 7 X
Table 3: Feature comparison between neural models for hybrid systems. 7 is used to indicate features that are
either not compatible, or have not been verified in the original work.

16

Simulation Hyperparameter Value

Number trajectories 40
ODE solver Dormand–Prince
Tolerances (abs, rel, event) 10−6, 10−6, 10−4

τoff 3
η 1
nack 2
pdrop 0.05
κ 4

Training Hyperparameter Value

Training iterations (mode recovery) 4000
Encoder Eθ learning rate 5 · 10−4

Decoder Fz learning rate 10−2

Optimizer Adam
Eθ layer dimensions [·, 64, 65, 64,m]
Eθ activation ReLU
Eθ dropout [0.3, 0.3, 0.3]
Fz layer dimensions [2 +m, 2]

Training iterations (event training) 4000
Learning rate 2 · 10−3

Optimizer Adam
ψz→z′ layer dimensions [2, 32, 2]

Table 4: Hyperparameters of [Left] TCP data simulation [Right] NHA in the TCP experiment, mode recovery
and event module training.

Gradients through the sampling operation are computed via straight–through–estimation (STE) [27],
which can be implemented with a stop_gradient (e.g. detach in PyTorch) operation present
in modern deep learning frameworks. Let z be the one–hot representation of system mode, and
p a vector of probabilities for the corresponding categorical distribution, computed as output
of a neural network parametrized NHA encoder Eθ. STE can be realized in a single line as z −
p.stop_gradient() + p. STE ensures the output of the encoder Eθ is strictly one–hot encoded,
while simultaneously ensuring that the gradients backpropagate directly through the probabilities.

The data–controlled Neural ODE decoder Fz incorporates mode information to select

ẋ =

m∑
i=1

zi fi(t, x, ωi)

where z is one–hot encoded, and thus only a single neural network vector field fi with parameters ωi
determines the solution.

B.1 Identification of Reno TCP

Experimental setup Tables 4 provide hyperparameters for data simulation and training of NHA.
Unless otherwise specified simulation, training and testing is repeated for 10 different random seeds.

The complete experiment on learning the Reno TCP system involves multiple stages: (i) mode
recovery and (ii) training of the NHA event module. As baselines for (i), we consider several Neural
ODE variants similar to NHA decoder Fz , with latent z obtained in different ways. Latent Neural
ODEs obtain z as sampled for Normal distribution Nθ := N (µθ, σθ) parametrized by a neural
network matching the architecture of Eθ. Reparametrization is used to backpropagate through the
sampling procedure. Data–controlled Neural ODEs (DC–NODEs) are comparable to Latent Neural
ODEs model with the major difference in the computation of latents as z = gθ(X) with gθ once
again matching Eθ. All decoders Fz are equivalent, except in the case of Augmented Neural ODEs
(the Neural ODEs is zero–augmented [9] i.e. z := 0) where the absence of the encoder is balanced by
a more expressive decoder with three–layers. The normalizing flows ψz→z′ in NHA event modules
are designed as spline flows [32] with two layers. We use the standard implementation of spline flows
in Pyro [46].

During mode recovery, all models are trained on 5–folds of 5. Training is performed by parallel
integration across subtrajectories Xi using the Runge–Kutta4 explicit solver. All gradients are
computed via reverse–mode automatic differentiation. We test models with lowest cross–validation
reconstruction MSE loss, since cross–validation v–score would not be available without ground–truth
labels. We find that lowest reconstruction loss often correlated with best v–measure. Baselines for
mode clustering (ii) include standard clustering algorithms k–means++ [29], hierarchical [30] and
DBSCAN [31]. We use scikit–learn [47] implementation of all baseline algorithms. We perform
light hyperparameter tuning on ground–truth labels for k–means++ and hierarchical to optimize their

17

performance in the range m ∈ [3, 5, 10]. DBSCAN is similarly tuned to optimize its performance
with parameter ε indicating the maximum size of neighourhoods around a data point. Subtrajectories
classified as noise by DBSCAN are counted as incorrectly clustered.

We observe DBSCAN performance to be correlated to NHA self–supervised mode recovery. Both
methods excel when density of data points under some metric is indicative of cluster separation.
However, NHA self–supervision relies on the additional inductive bias of data points in a subtrajectory
representing observations of a solution of an ODE, whereas DBSCAN does not. The denser the
trajectories, the more restricting the Neural ODE representation limitations, and the easier each
cluster is to find. Due to the similarity in their working principle, DBSCAN performance can be used
as a quick sanity check to determine whether the dataset is suitable to NHA mode recovery.

B.2 Robustness to Segmentation Noise

∆

Model p = 0.1 p = 0.3 p = 0.5

k–means++ −0.01 (0.29) −0.05 (0.25) −0.08 (0.22)
hierarchical −0.00 (0.31) −0.02 (0.29) −0.03 (0.28)
DBSCAN −0.08 (0.61) −0.28 (0.41) −0.46 (0.23)

NHA–3 +0.02 (0.88) −0.13 (0.73) −0.45 (0.41)
NHA–5 −0.00 (0.91) −0.17 (0.74) −0.48 (0.43)
NHA–10 −0.07 (0.89) −0.25 (0.71) −0.41 (0.45)

Table 5: v–measure performance differences after self–supervised
mode recovery performed on a dataset with imperfect segmentation
noisy segmentation of the TCP dataset of the main text. We evaluate
each method under an increasing degree of data corruption. Hyper-
parameter p indicates the probability for a subtrajectory Xi to be
subject to a noisy segmentation i.e. to have the index determining
its initial condition be perturbed and shifted either left (before) or
right (after). In parenthesis, the v–measure of each model in a given
noisy regime.

We investigate robustness of NHA
mode recovery and related baselines
to a noisy segmentation in subtrajec-
tories Xi. To simulate incorrect seg-
mentations, we collect segmentation
indices and perturb them by adding or
removing an uniformly sampled from
[1, 10]. Each index has a p probabil-
ity of being corrupted by noise, and
we repeat mode recovery with p ∈
[0.1, 0.3, 0.5] (3 times per p). Shifting
left or right by values sampled from
[1, 10] results in significant data cor-
ruption; certain subtrajectories, being
shorter than 10 points, can be com-
pletely absorbed into a different sub-
trajectory. Table 5 reports the differ-
ences in v–measure compared to the
results of Section 5.1. For each base-
line, we report best results in terms of
hyperparameter m ∈ [3, 5, 10], typi-
cally m = 10, corresponding to ε = 1 for DBSCAN. Although specific perturbation patterns may
affect the model more than others, the trend uncovered by the results is clear.

B.3 Switching Linear System and Mode Mixing

Experimental setup We considered the two–dimensional switching linear system reported in [20],
described by the dynamics

(ẋt, ẏt) = f(xt, yt) :=

(−yt, xt + 2) if xt ≥ 2

(−1,−1) if xt < 2 ∧ yt ≥ 0

(1,−1) if xt < 2 ∧ yt < 0

(B.1)

We performed an ablation study on the effect of the categorical sampling for the mode selection in
NHAs in presence of redundant "free" modes. In particular, we considered the following learning
model

(ẋt, ẏt) =

4∑
i=1

witfi(xt, yt) (B.2)

with one redundant mode. Fi (i = 1, 2, 3, 4) was two-layers neural networks with 32 neurons each,
softplus activation on the first hidden layer and hyperbolic tangent activation on the second one. We
then defined two variants of the model: a first variant with wt = (w1

t , w
2
t , w

3
t , w

4
t) directly obtained

via softmax normalization of the output of a neural network g,

wt = softmax g(xt, yt);

18

0 2

−2
0

2

x

y

z1(x, y)

0 1

0 2

−2
0

2

x

y

z2(x, y)

0 1

0 2

−2
0

2

x

y

z3(x, y)

0 1

0 2

−2
0

2

x

y

z4(x, y)

0 1

Discrete Mode Selector: Categorical Samples z ∼ Categorical(Eω(x, y))

Figure 10: Reconstructed conditional vector fields Fz and corresponding mode classification boundaries. The
categorical encoder uses two identical modes for a single ground–truth vector fields.

and a second one where wt is obtained by a categorical sample conditioned by g(xt, yt), i.e.

∀t wt ∼ categorical(softmax g(xt, yt))

g was fixed as a neural network made up by two layers with 64 units and SiLU (swish) acti-
vation. The two models were trained on a L1 reconstruction loss of nominal trajectories of the
system (B.1). We introduced a regularization term penalizing the squared error on un–normalized
finite differences of nominal/reconstructed trajectories as a proxy for the vector field information.

0 2

−2

0

2

x

y

Difference Between Vector Fields
of Overlapping Modes

‖F2 − F3‖1

0.5

1

1.5

·10−2

Figure 9: Similarity between learned
mode vector fields F2 and F3 of Figure
10. The two vector fields are equivalent in
the region of interest, as indicated by the
L1–norm, and the corresponding modes
can thus be merged.

Mode pruning Uniqueness theorems for ODE solutions
guarantee that, given an initial condition and a mode latent
code z, the decoder Fz will always produce the same trajec-
tory. Immunity to mixing for categorical latents enables mode
pruning and recovery of a minimal representation. If Lr sat-
urates, the encoder has not been initialized with a sufficient
number of modes m. Redundant modes may be pruned, in
example, by merging them if a similarity measure between
the corresponding vector fields Fzi , Fzj e.g. difference in a
given norm calculated on data trajectories, is small enough.
Figure 10 provides an example result of the second scenario
discussed in Section 5.2, where categorical NHA encoders
use more than a single latent mode for a target underlying
mode. However, due to their immunity to mode mixing, the
vector fields are equivalent, and can be merged. We show this
in Figure 9, where the L1–norm between F2 and F3 is shown
to be small in the region where the corresponding modes 2 and 3 are active.

B.4 End–To–End Learning of Hierarchical Controllers for Dynamical Systems

Experimental setup Our objective is to control a swarm of differential drive robots moving on a
planar space. The system dynamics are

ẋ1 = uv cos θ

ẋ2 = uv sin θ

ϑ̇ = ur

(B.3)

where ϑ is the orientation of a single robot. The control [uv, ur] ∈ R2 is obtained via the low–level,
time–invariant feedback controller uz := u(x1, x2, ϑ, z), with z produced and switched every 5
seconds by the planner. Both the controller and the policy π, are parametrized by a neural network.
We use Adam for both networks, with learning rates 10−3, 10−3.

The training of low–level controller uz and high–level planner π is carried out concurrently. We
perform batch training on robot swarms of N = 80000. At the beginning of each episode, we sample

19

the initial conditions uniformly in a square region, with each robot rotated according to a random
orientation also uniformly sampled in [0, 2π]. During each episode, we simulate the switching and
control behaviour of each robot with respect to two pre-defined map layouts, both shown in the
alternating resource pattern of the upper-left plot of Figure 8a. Each map layout has M = 5 resource
locations, where two auxiliary scalar variables r1 and r2 specify, for each resource, its planar location.

We train policy networks π(x1, x2, r11, r21, ..., r1m, r2m) where the inputs correspond to the con-
catenated robot states, together with the flattened resource locations. The M−dimensional softmax
output determines a categorical probability distribution over the resources is then used to sample a
resource target.

A reward can be assigned to each robot based on the ability to select the correct target. For each robot,
we generate a reward of 1 if the selected target is correct, and 0 otherwise. Let G(si, pi) be the reward
of robot i in the swarm, we can compute the reward for a swarm in a map by R =

∑N
i
G(si,pi)
1000

where s is the categorical sample from the distribution over the targets, and p are the reference targets
computed by argminj ||[r1j , r2j] − [x1, x2]|| (note R ∈ [0, 80] for any one episode), with x1, x2
being the robot location at the time of switching. The target selector is trained by minimizing a
Lπ = − 1

T

∑T
t ln(π(s

(t)
p) ∗ R), where T is the number of alternating maps, and s(t)p denotes the

concatenated robot location and resource map with respect to the tth map layout used for training.

The target selected by the planned informs low–level controller uz via the corresponding resource
location. In particular, we provide as input to uz the coordinates z := [r1, r2] of the target chosen by
π. This augmented state is used by uz to resolve the robot’s dynamics and drive the swarm closest
to their selected targets. We train uz by solving a continuous–time optimal control problem with a
terminal RMSE loss between the state reached by the robot and the objective set by the policy planner.
Here, we integrate the system using the adaptive–step DormandPrince [48] solver with tolerances
10−3, 10−3.

Discussion of results Figure 8 shows the average reward and control loss of the robot swarm during
training, with both trends converging after 4000 episodes. Figures 8a and 8b show the generated
control of a randomly generated swarm of 100 robots on two new maps. In the first map, the
targets consist on alternating patterns of the learned map layouts, generating a straight line pattern
which correctly captures the greedy robot policy imposed. The second map consists instead of a
new, unseen, map layout within the alternation. The trained model is capable of generalizing the
planning and control strategy to account for the new map layout, by redirecting the robots onto their
closest resource in a wave-like pattern. On the first tested map, the model achieves 99.8%± 0.8%
average target accuracy for the 100 robot tested batch. On the second tested map, the model achieves
98.5%± 1.95% average target accuracy for the 100 robot tested batch.

C Realization of NHAs

C.1 Software Implementation of Hybrid Integration

We provide documented Python pseudo–code for the hybrid system adaptive integration algorithm
used for dataset generation. This function can handle hybrid systems with multiple modes and
transitions. Each possible event requires its own callback function with check_event and jump_map
methods. We provide an example of one such callback under odeint_hybrid.

1 def odeint_hybrid(vf, x, t_span, solver, callbacks, atol, rtol, event_tol):
2 """ODE solver for hybrid systems with multiple events."""
3 # initialize event state tracker, one boolean for each possible event
4 # (or edge in the automata representation of the SHS).
5 event_states = [False for _ in range(len(callbacks))]
6 dt = initial_step_size(f, k1, x, t, solver.order, atol, rtol)
7

8 while t < t_span[-1]:
9 # tentative step

10 x_step, x_err = solver.step(vf, x, t, dt)
11

12 # check whether any event

20

13 # has been triggered in the interval [t, t + dt]
14 new_event_states = [cb.check_event(t + dt, x_step)
15 for cb in callbacks]
16

17 # has any event state moved from `False' to `True' in [t, t + dt]?
18 triggered_events = sum([(zp != z) & (z == False)
19 for zp, z in zip(new_event_states, event_states)])
20 # if an event / mode transition has been triggered,
21 # find exact event time and state
22 if triggered_events > 0:
23 x, t = root_find_event(max_iters, event_tol)
24

25 # if there is a conflict and multiple events are triggered,
26 # takes always the one with smaller ID
27 zp = min([i for i, ev in enumerate(new_event_states)
28 if ev == True])
29

30 t = t + dt
31 # save state and time BEFORE and AFTER jump
32 sol.append(x)
33 eval_times.append(t)
34

35 # apply jump func.
36 x = callbacks[zp].jump_map(t, x)
37

38 sol.append(x)
39 eval_times.append(t)
40

41 # when there are no events,
42 # proceed as usual with adaptive integration
43 else:
44 error_ratio = compute_error(x_step, x_err, atol, rtol)
45 accept_step = error_ratio <= 1
46

47 if accept_step:
48 t = t + dt
49 sol.append(x)
50 eval_times.append(t)
51

52 else:
53 dt = adapt_step(dt, error_ratio, safety,
54 min_factor, max_factor, order)
55

56 return eval_times, sol

The callbacks are in the form:

1 class EventCallback(nn.Module):
2 super().__init__()
3

4 def check_event(self, t, x):
5 raise NotImplementedError
6

7 def jump_map(self, t, x):
8 raise NotImplementedError
9

10

11 class StochasticEventCallback(nn.Module):
12

13 super().__init__()
14 self.exponential = Exponential(1)
15

16 def initialize(self, x0):

21

17 # sample one `s' for each batch in x0, to identify events
18 # as described in Section 2. Exponential, instead of Uniform
19 # is used to avoid `log' computations.
20 # Should be sampled again after every event is triggered.
21 self.s = self.exponential.sample(x0.shape[:1])
22

23 def check_event(self, t, x):
24 raise NotImplementedError
25

26 def jump_map(self, t, x):
27 raise NotImplementedError

22

	1 Introduction
	2 Background
	2.1 Stochastic Hybrid Systems
	2.2 Event Handling for Hybrid Systems
	2.3 Core primitives for SHS learning

	3 Neural Hybrid Automata
	4 Neural Hybrid Automata Module Training
	5 Results and Discussion
	5.1 System with Stochastic Transitions
	5.2 Deterministic Switching System
	5.3 End–To–End Learning of Hierarchical Switching Controllers for Dynamical Systems
	5.4 Generalizable Insights and Empirical Observations

	6 Related Work
	7 Conclusion
	
	
	A Additional Discussion and Theory
	A.1 Neural Hybrid Automata: Modules and Hyperparameters
	A.2 Gradient Pathologies
	A.3 Extensions and Limitations
	A.4 Detailed Feature Comparisons with Related Work
	A.5 Broader Impact

	B Experimental Details
	B.1 Identification of Reno TCP
	B.2 Robustness to Segmentation Noise
	B.3 Switching Linear System and Mode Mixing
	B.4 End–To–End Learning of Hierarchical Controllers for Dynamical Systems

	C Realization of NHAs
	C.1 Software Implementation of Hybrid Integration

