
1

An Extendable, Efficient and Effective
Transformer-based Object Detector

Hwanjun Song, Deqing Sun, Sanghyuk Chun, Varun Jampani, Dongyoon Han,
Byeongho Heo, Wonjae Kim, Ming-Hsuan Yang

Abstract—Transformers have been widely used in numerous vision problems especially for visual recognition and detection. Detection
transformers are the first fully end-to-end learning systems for object detection, while vision transformers are the first fully
transformer-based architecture for image classification. In this paper, we integrate Vision and Detection Transformers (ViDT) to
construct an effective and efficient object detector. ViDT introduces a reconfigured attention module to extend the recent Swin
Transformer to be a standalone object detector, followed by a computationally efficient transformer decoder that exploits multi-scale
features and auxiliary techniques essential to boost the detection performance without much increase in computational load. In
addition, we extend it to ViDT+ to support joint-task learning for object detection and instance segmentation. Specifically, we attach an
efficient multi-scale feature fusion layer and utilize two more auxiliary training losses, IoU-aware loss and token labeling loss.
Extensive evaluation results on the Microsoft COCO benchmark dataset demonstrate that ViDT obtains the best AP and latency
trade-off among existing fully transformer-based object detectors, and its extended ViDT+ achieves 53.2AP owing to its high scalability
for large models. The source code and trained models are available at https://github.com/naver-ai/vidt.

Index Terms—Vision Transformers, Detection Transformers, Object Detection, Instance Segmentation

F

1 INTRODUCTION

O BJECT detection aims to predict both the bounding box
and object class for each object of interest in an image.

Recent deep object detectors rely heavily on meticulously
designed components, such as anchor generation and non-
maximum suppression [1], [2]. As a result, the performance
of these object detectors depends on specific postprocessing
steps, which involve complex pipelines and make fully end-
to-end training difficult.

Motivated by the recent success of Transformers [3] in
NLP, numerous models have been developed for various
vision tasks, especially in recognition and detection. Car-
ion et al. [4] propose the Detection Transformers (DETR)
to replace the meticulously designed components with a
transformer encoder and decoder architecture, which serves
as a neck component to bridge a CNN body for feature
extraction and a detector head for prediction. As such, DETR
enables end-to-end training of deep object detectors. On
the other hand, Dosovitskiy et al. [5] show that a fully-
transformer backbone without any convolutional layers,
Vision Transformer (ViT), achieves state-of-the-art results
on image classification benchmarks. DETR and ViT have
been shown to learn effective representation models without
relying strongly on human inductive biases, e.g., metic-
ulously designed components in object detection (DETR),
convolutional layers and pooling mechanisms for locality-
aware designs (ViT). However, no attempt has been made
to synergize DETR and ViT for a better object detection
architecture. In this work, we integrate both approaches
to construct a fully transformer-based, end-to-end object
detector that achieves state-of-the-art performance without
increasing computational load.

Straightforward integration of DETR and ViT can be

27

34

41

48

55

10 45 80 115 150

A
P

Latency (ms/image)

DETR (Deit) DETR (Swin)
Deform DETR (Deit) Deform DETR (Swin)
YOLOS ViDT ViDT+

nano

tiny
small

base small

tiny

nano

tiny

small

base

tiny small
nano

tiny

small

tiny small

base

base

base

base

basesmall
tiny

nano

Fig. 1. Performance of recent object detectors in terms of av-
erage precision (AP) and latency. Detailed The text in the plot
indicates the backbone model size. The latency was measured
with batch size 1 of 800 × 1333 resolution on NVIDIA A100
GPU. AP and latency (milliseconds) are summarized in Table 3.

achieved by replacing the ResNet backbone (body) of DETR
with ViT as shown in Figure 2(a). This naive integration,
DETR (ViT)1, has two limitations. First, as the original ViT
suffers from the quadratic increase in complexity w.r.t.
image size, this approach does not scale up well. Further-
more, the attention operation at the transformer encoder
and decoder (i.e., the “neck” component) adds significant
computational overhead to the detector. Thus, the naive
integration of DETR and ViT would cause high latency, as
shown in the blue lines of Figure 1.

1. We refer to each model based on the combinations of its body and
neck. For example, DETR (DeiT) indicates that DeiT (vision transform-
ers) is integrated with DETR (detection transformers).

ar
X

iv
:2

20
4.

07
96

2v
1

 [
cs

.C
V

]
 1

7
A

pr
 2

02
2

https://github.com/naver-ai/vidt

2

Body Neck

Det.

ViT

Backbone
Box

Reg.

Class.

Head
Body

Head
Neck

Trans.

Dec.

Det.Patch Tokens Det.Patch Tokens

Body

Det.

Trans.

Dec.

Trans.

Enc.
Box

Reg.

Class.

Head

Det.Patch Tokens

Det.Patch Tokens

Det.Patch Tokens

Patch Tokens

Patch

Det.

Det.

Det.Patch

Box

Reg.

Class.

Patch Tokens

(a) DETR (ViT). (b) YOLOS. (c) ViDT (Ours).

Fig. 2. Pipelines of fully transformer-based object detectors. DETR (ViT) denotes Detection Transformer using ViT as its body.
ViDT exploits merits of DETR (ViT) and YOLOS and achieves the best AP and latency trade-off among fully transformer-based
object detectors.

Recently, Fang et al. [6] propose the YOLOS model by
appending the detection tokens [DET] to the patch tokens
[PATCH] (see Figure 2(b)), where [DET] tokens are learnable
embeddings to specify different objects to detect. YOLOS
is a neck-free architecture and removes the additional
computational costs from the neck encoder. However,
YOLOS shows limited performance because it cannot
exploit additional optimization techniques on the neck
architecture, e.g., multi-scale features and auxiliary loss.
In addition, YOLOS can only accommodate the original
transformer due to its architectural limitation, resulting in a
quadratic complexity w.r.t. the input size.

In this paper, we propose a novel integration of Vision
and Detection Transformers (ViDT) (see Figure 2(c)). Our
contributions are three-fold. First, ViDT introduces the Re-
configured Attention Module (RAM), to facilitate any ViT
variant to handle the appended [DET] and [PATCH] tokens
for object detection. Thus, we can integrate the Swin Trans-
former [7] backbone with RAM to be an object detector and
obtain high scalability using its local attention mechanism
with linear complexity. Second, ViDT adopts a lightweight
encoder-free neck architecture to reduce the computational
overhead while still enabling the additional optimization
techniques on the neck module. Note that the neck encoder
is unnecessary because RAM directly extracts fine-grained
representation for object detection, i.e., [DET] tokens. As a
result, ViDT achieves better performance than its neck-free
counterparts. Finally, we extend the vanilla ViDT to an end-
to-end architecture named ViDT+, thereby enabling multi-
task learning of object detection and instance segmentation.
For effective multi-task learning, ViDT+ equips efficient fea-
ture pyramid layers on top of its body for multi-scale feature
fusion, and leverages two additional training losses i.e., IoU-
aware loss [8] and token labeling loss [9]. ViDT+ only adds
1M learnable parameters and barely reduces its inference
speed than ViDT, but achieves a significant accuracy gain.

ViDT has three architectural advantages over existing
approaches. First, similar to YOLOS, ViDT takes [DET] to-
kens as the additional input, maintaining a fixed scale for
object detection, but constructs hierarchical representations
starting with small-sized image patches for [PATCH] tokens.
Second, ViDT can use the hierarchical (multi-scale) features
and additional techniques without a significant computa-
tion overhead. Thus, as a fully transformer-based object
detector, ViDT facilitates better integration of vision and de-
tection transformers. Third, ViDT accommodates numerous
tasks and transformer models. It can be extended to be an

end-to-end architecture for multi-task learning, and easily
combined with ViT variants such as CoaT [10] and PVT-
v2 [11] other than the Swin Transformer. Extensive exper-
iments on Microsoft COCO [12] show that ViDT is highly
scalable even for large ViT models, such as Swin-base with
0.1 billion parameters, and achieves the best AP and latency
trade-off among existing fully transformer-based detectors.
In particular, ViDT+ with Swin-base achieves 53.2AP for
object detection, which is 2.6AP higher than that of the
vanilla ViDT.

This work is an extensive version of our ICLR 2022 [13].
Compared to the ICLR 2022 work, this paper includes the
following additional contributions: (1) a new joint-learning
framework named ViDT+, an extension of the vanilla ViDT,
by incorporating three additional components: an efficient
pyramid feature fusion module, a unified query representa-
tion module, and an IoU-aware and token labeling losses,
(2) a detailed computational complexity analysis of the
proposed VIDT compared to the YOLOS detector, (3) a
performance comparison for object detection and instance
segmentation compared with other CNN-based state-of-
the-art methods, (4) an ablation study for the three new
components of ViDT+ and a complete analysis of all the
proposed components, (5) the reconfigured attention mod-
ule combined with ViT variants such as CoaT and PVT-v2
other than the Swin Transformer.

2 PRELIMINARIES

Object detection is a task of predicting a set of bounding
boxes and classification labels for each object of interest.
There have been significant efforts to develop efficient and
effective detection backbones and pipelines [14], [15]. Typ-
ically, as a pre-trained backbone is fine-tuned in single-
and two-stage fashion; single-stage detectors produce pre-
dictions directly w.r.t. anchors or a grid of possible object
centers, e.g., SSD [16] and YOLO [17], while two-stage de-
tectors predict bounding boxes w.r.t. region proposals, e.g.,.
Faster R-CNN [18]. The success of modern object detectors
has achieved very high detection accuracy, but they heavily
depend on some meticulously designed components, such
as anchor generation and non-maximum suppression [1],
[2]. In addition, finding the optimal trade-off between de-
tection accuracy and inference speed is not a trivial task. In
this paper, we study the integration of vision and detection
transformers and show its potential to be a new generic
detection pipeline, achieving good performance trade-offs
without the meticulously designed components.

3

V

[PATCH] Tokens
Feature

Map

Feature

Map

Replicate

Spatial Positional

Encoding

Detection Token

Encoding

Q

V
[PATCH]×[PATCH] with Window Partitions

Q
V

K

+

+

× [PATCH] Tokens

[DET]×[DET & PATCH]

K

Q
K

V
Q K

K

×

V V

× [DET] Tokens

×Q K

Relative Pos.

Reassemble

[DET] Tokens

Fig. 3. Reconfigured Attention Module (Q: query, K: key, V: value). The skip connection and feedforward networks following the
attention operation is omitted just for ease of exposition.

Vision transformers process an image as a sequence of
small image patches, thereby facilitating consideration of
interaction among patches at all positions (i.e., global at-
tention). However, the original ViT [5] cannot be easily
scaled to a wide range of vision tasks due to its high com-
putational complexity, which increases quadratically with
respect to image size. The Swin Transformer [7] alleviates
the complexity issue by introducing the notion of shifted
windows that support local attention and patch reduction
operations, thereby improving compatibility for dense pre-
diction tasks such as object detection and semantic segmen-
tation. A few approaches use vision transformers as detector
backbones but achieve limited success [6], [7], [19]. In this
work, we significantly improve the performance of detectors
with transformer backbones by the proposed architectural
changes and extensions for multi-task learning.

Detection transformers eliminate the meticulously de-
signed components (e.g., anchor generation and non-
maximum suppression) by combining convolutional net-
work backbones and Transformer encoder-decoders. While
the original DETR [4] achieves high detection performance,
it suffers from slow convergence compared to previous
detectors. For example, DETR requires 500 epochs while the
Faster R-CNN [18] needs only 37 epochs [20] for training.
To mitigate the issue, Zhu et al. [21] propose Deformable
DETR which introduces deformable attention for utilizing
multi-scale features as well as expediting the slow training
process of DETR. In this paper, we use the Deformable
DETR as our base detection transformer framework and
integrate it with the three recent vision transformers.

DETR (ViT) is a straightforward integration of DETR and
ViT, which uses ViT as a feature extractor, followed by the
transformer encoder-decoder in DETR. As illustrated in Fig-
ure 2(a), it is a body–neck–head structure; the representation
of input [PATCH] tokens are extracted by the ViT backbone
and then directly fed to the transformer-based encoding
and decoding pipeline. To predict multiple objects, a fixed
number of learnable [DET] tokens are provided as additional
input to the decoder. Subsequently, the output embeddings
by the decoder are considered as final predictions through
the detection heads for classification and box regression.
Since DETR (ViT) does not modify the backbone at all, it
can be flexibly changed to any latest ViT model, e.g., Swin
Transformer. Additionally, its neck decoder facilitates the
aggregation of multi-scale features and the use of additional

techniques, such as auxiliary decoding loss and iterative box
refinement, which help detect objects of different sizes and
speed up the training process [21]. However, the attention
operation at the neck encoder adds significant computa-
tional overhead to the detector. In contrast, ViDT resolves
this issue by directly extracting fine-grained [DET] features
from the Swin Transformer with RAM without maintaining
the transformer encoder in the neck architecture.

YOLOS [6] is a ViT architecture for object detection with
minimal modifications. As illustrated in Figure 2(b), YOLOS
consists of a neck-free structure by appending randomly
initialized learnable [DET] tokens to the sequence of input
[PATCH] tokens. Since all the embeddings for [PATCH] and
[DET] tokens interact via global attention, the final [DET]
tokens are generated by the fine-tuned ViT backbone and
then directly generate predictions through the detection
heads without requiring any neck layer. While the naive
DETR (ViT) suffers from the computational overhead from
the neck layer, YOLOS enjoys efficient computations by
treating the [DET] tokens as additional input for ViT. YOLOS
shows that 2D object detection can be accomplished in a
pure sequence-to-sequence manner, but this solution entails
two inherent limitations:

(1) YOLOS inherits the drawback of the original ViT; the
high computational complexity attributed to the global
attention operation. As illustrated in Figure 1, YO-
LOS shows poor latency compared with other fully
transformer-based detectors, especially when its model
size becomes larger, i.e., small → base. Thus, YOLOS is
not scalable for the large model.

(2) YOLOS does not benefit from using any additional
techniques essential for better detection performance,
e.g., multi-scale features, due to the absence of the neck
layer. Although YOLOS used the same DeiT backbone
with Deformable DETR (DeiT), its AP was lower than
the straightforward integration.

In contrast, the encoder-free neck architecture of ViDT
enjoys additional optimization techniques from Zhu et al.
[21], resulting in faster convergence and better performance.
Further, our RAM enables us to combine the Swin Trans-
former2 and sequence-to-sequence paradigm for detection.

2. It is not limited to the Swin Transformer. Our reconfiguration
scheme can be easily applied to other variants with simple modifica-
tions. See Appendix B.1 for the combination with CoaT and PVT-v2.

4

3 VIDT: VISION AND DETECTION TRANSFORMERS

ViDT first reconfigures the attention model of the Swin
Transformer to support standalone object detection while
fully reusing the parameters of the Swin Transformer. Next,
it incorporates an encoder-free neck layer to exploit multi-
scale features and two essential techniques: auxiliary decod-
ing loss and iterative box refinement.

3.1 Reconfigured Attention Module (RAM)

Applying patch reduction and local attention scheme of the
Swin Transformer to the sequence-to-sequence paradigm is
challenging because (1) the number of [DET] tokens must
be maintained at a fixed-scale and (2) the lack of locality
between [DET] tokens. To address these issues, we introduce
a reconfigured attention module (RAM) that decomposes a
single global attention associated with [PATCH] and [DET]
tokens into the three different attention, namely [PATCH] ×
[PATCH], [DET] × [DET], and [DET] × [PATCH] attention. Based
on the decomposition, the efficient schemes of the Swin
Transformer are applied only to [PATCH]× [PATCH] attention,
which is the heaviest part of computational complexity,
without breaking the two constraints on [DET] tokens. As
illustrated in Figure 3, these modifications fully reuse all the
parameters of the Swin Transformer by sharing projection
layers for [DET] and [PATCH] tokens, and perform the three
different attention operations:

As a standalone object detector, RAM must be accompa-
nied by three attention operations:
• [PATCH] × [PATCH] Attention: The initial [PATCH] tokens

are progressively calibrated across the attention layers
such that they aggregate the key contents in the global
feature map (i.e., a spatial form of [PATCH] tokens) ac-
cording to the attention weights, which are computed
by 〈query, key〉 pairs. For [PATCH] × [PATCH] attention,
the Swin Transformer performs local attention on each
window partition, but its shifted window partitioning in
successive blocks bridges the windows of the preceding
layer, providing connections among partitions to capture
global information. We use a similar policy to generate
hierarchical [PATCH] tokens. Thus, the number of [PATCH]
tokens is reduced by a factor of 4 at each stage; the
resolution of feature maps decreases from H/4 ×W/4 to
H/32×W/32 over a total of four stages, where H and W
denote the width and height of the input image.

• [DET]×[DET] Attention: Similar to YOLOS, we append one
hundred learnable [DET] tokens as the additional input
to the Swin Transformer. As the number of [DET] tokens
specify the number of objects to detect, their number must
be maintained with a fixed-scale over the transformer
layers. In addition, [DET] tokens do not have any locality
unlike the [PATCH] tokens. Hence, for [DET] × [DET] atten-
tion, we perform global self-attention while maintaining
the number of them; this attention helps each [DET] token
to localize a different object by capturing the relationship
between them.

• [DET] × [PATCH] Attention: We consider cross-attention
between [DET] and [PATCH] tokens, and generate an object
embedding per [DET] token. For each [DET] token, the key
contents in [PATCH] tokens are aggregated to represent

the target object. Since the [DET] tokens specify different
objects, it produces different object embeddings for di-
verse objects in the image. Without the cross-attention,
it is infeasible to realize the standalone object detector.
As shown in Figure 3, ViDT binds [DET] × [DET] and
[DET] × [PATCH] attention to process them at once to
increase efficiency.

We replace all the attention modules in the Swin Trans-
former with the proposed RAM, which receives [PATCH] and
[DET] tokens (as shown in “Body” of Figure 2(c)) and then
outputs their calibrated new tokens by performing the three
different attention operations in parallel.

Positional Encoding. ViDT adopts different positional en-
codings for different types of attention. For [PATCH]×[PATCH]
attention, we use the relative position bias [22] originally
used in the Swin Transformer. In contrast, the learnable po-
sitional encoding is added for [DET] tokens for [DET]× [DET]
attention because there is no particular order between
[DET] tokens. However, for [DET] × [PATCH] attention, it is
crucial to inject spatial bias to the [PATCH] tokens due to
the permutation-equivariant in transformers, ignoring spa-
tial information of the feature map. Thus, ViDT adds the
sinusoidal-based spatial positional encoding to the feature
map, which is reconstructed from the [PATCH] tokens for
[DET]× [PATCH] attention, as can be seen from the left side of
Figure 3. We present a thorough analysis of various spatial
positional encodings in Section 5.2.1.

Use of [DET]× [PATCH] Attention. Applying cross-attention
between [DET] and [PATCH] tokens adds additional compu-
tational overhead to the Swin Transformer, especially when
it is activated at the bottom layer due to the large number of
[PATCH] tokens. To minimize such computational overhead,
ViDT only activates the cross-attention at the last stage (the
top level of the pyramid) of the Swin Transformer, which
consists of two transformer layers that receives [PATCH]
tokens of size H/32 × W/32. Thus, only self-attention for
[DET] and [PATCH] tokens are performed for the remaining
stages except the last one. In Section 5.2.1, we show that this
design choice helps achieve the highest FPS, while achieving
similar detection performance as when cross-attention is
enabled at every stage.

Binding [DET]× [DET] and [DET]× [PATCH] Attention. We
bind the two attention modules by a simple implementation.
In this work, [DET] × [DET] and [DET] × [PATCH] attention
generate new [DET] tokens, which aggregate relevant con-
tents in [DET] and [PATCH] tokens, respectively. Since the
two attention modules share exactly the same [DET] query
embedding obtained after the projection as shown in Figure
3, they can be processed at once by performing matrix
multiplication between [DET]Q and

[
[DET]K · [PATCH]K

]
embeddings, where Q, K are the key and query, and [·]
is the concatenation. Then, the obtained attention map is
applied to the

[
[DET]V · [PATCH]V

]
embeddings, where V is

the value and d is the embedding dimension,

[DET]new =

Softmax
([DET]Q

[
[DET]K , [PATCH]K

]>
√
d

)
[
[DET]V , [PATCH]V

]
.

(1)

5

TABLE 1. Summary of computational complexity for different attention operations used in YOLOS and ViDT (RAM), where P
and D are the number of [PATCH] and [DET] tokens, respectively (D� P).

Attention Type YOLOS ViDT

[PATCH]× [PATCH] Attention O(d2P + dP2) O(d2P + dk2P)
[DET]× [DET]Attention O(d2D + dD2) O(d2D + dD2)
[DET]× [PATCH]Attention O(dPD) O(d2(P + D) + dPD)

Total Complexity O(d2(P + D)+ d(P + D)2) O(d2(P + D) + dk2P + dD2 + dPD)

Embedding Dimension of [DET] tokens. In this work,
[DET]× [DET] attention is performed across every stage, and
the embedding dimension of [DET] tokens increases gradu-
ally like [PATCH] tokens. For a [PATCH] token, its embedding
dimension is increased by concatenating nearby [PATCH]
tokens in a grid. However, this mechanism does not apply
to [DET] tokens since we maintain the same number of [DET]
tokens for detecting a fixed number of objects in a scene.
Hence, we simply repeat a [DET] token multiple times along
the embedding dimension to increase its size. This allows
[DET] tokens to reuse all the projection and normalization
layers in the Swin Transformer without any modification3.

3.2 Encoder-free Neck Structure

To exploit multi-scale feature maps, ViDT incorporates a
decoder of multi-layer deformable transformers [21]. In
the DETR family (Figure 2(a)), a transformer encoder is
required at the neck to transform features extracted from the
backbone for image classification into the ones suitable for
object detection; the encoder is generally computationally
expensive since it involves [PATCH] × [PATCH] attention.
However, ViDT maintains only a transformer decoder as
its neck, in that the Swin Transformer with RAM directly
extracts fine-grained features suitable for object detection
as a standalone object detector. Thus, the neck structure of
ViDT is computationally efficient.

The decoder receives two inputs from the Swin Trans-
former with RAM: (1) [PATCH] tokens generated from each
stage (i.e., four multi-scale feature maps, {xl}Ll=1 where
L = 4) and (2) [DET] tokens generated from the last stage.
The overview is illustrated in “Neck” of Figure 2(c). In
each deformable transformer layer, [DET] × [DET] attention
is performed first. For each [DET] token, multi-scale de-
formable attention is applied to produce a new [DET] token,
aggregating a small set of key contents sampled from the
multi-scale feature maps {xl}Ll=1,

MSDeformAttn([DET], {xl}Ll=1) =
M∑
m=1

Wm

[L∑
l=1

K∑
k=1

Amlk ·W ′
mxl

(
φl(p) + ∆pmlk

)]
,

(2)

where m indices the attention head and K is the total num-
ber of sampled keys for content aggregation. In addition,
φl(p) is the reference point of the [DET] token re-scaled for
the l-th level feature map, while ∆pmlk is the sampling
offset for deformable attention; and Amlk is the attention
weights of the K sampled contents. Wm and W ′

m are the
projection matrices for multi-head attention.

3. When combined RAM with CoaT and PVT-v2, which use convo-
lutional layers for token pooling, we add linear layers to handle the
embedding dimension of [DET] tokens.

Auxiliary Techniques for Additional Improvements. The
decoder of ViDT follows the standard structure of multi-
layer transformers, generating refined [DET] tokens at each
layer. Hence, ViDT leverages the two auxiliary techniques
used in (Deformable) DETR for additional improvements:
• Auxiliary Decoding Loss [4]: Detection heads consisting

of two feedforward networks (FFNs) for box regression
and classification are attached to every decoding layer.
All the training losses from detection heads at different
scales are added. This helps the model output the correct
number of objects without non-maximum suppression.

• Iterative Box Refinement [21]: Each decoding layer refines
bounding boxes based on predictions from the detection
head in the previous layer. Thus, the box regression pro-
cess progressively improves through the decoding layers.
These two techniques are essential for transformer-based

object detectors because they significantly enhance detection
performance without compromising detection efficiency. We
provide an ablation study of their effectiveness for object
detection in Section 5.2.2.

3.3 Complexity Analysis: ViDT vs. YOLOS

We analyze the computational complexity of the proposed
RAM compared with the attention used in YOLOS, based
on building blocks of the original and Swin Transformer
models [3], [7].

Let P and D be the number of [PATCH] and [DET] tokens
(D� P in practice, e.g., P = 66, 650 and D = 100 at the first
stage of ViDT with the resolution of 800 × 1333 images),
respectively. The computational complexity of the attention
module for YOLOS and ViDT (RAM) is then derived as
below, also summarized in Table 1:
• YOLOS Attention: [DET] tokens are simply appended

to [PATCH] tokens to perform global self-attention on
[PATCH, DET] tokens (i.e., P + D tokens). Thus, the compu-
tational complexity is O(d2(P + D) + d(P + D)2), which
is quadratic to the number of [PATCH] tokens. If breaking
down the total complexity, we obtain O

(
(d2P + dP2) +

(d2D+dD2)+dPD
)
, where the first and second terms are

for the global self-attention for [PATCH] and [DET] tokens,
respectively, and the last term is for the global cross-
attention between them.

• ViDT (RAM) Attention: RAM performs the three dif-
ferent attention operations (with the complexities): (1)
[PATCH]× [PATCH] local self-attention with window parti-
tion,O(d2P+dk2P); (2) [DET]×[DET] global self-attention,
O(d2D + dD2); (3) [DET]× [PATCH] global cross-attention,
O(d2(P+D)+dPD). In total, the computational complex-
ity of RAM is O(d2(P + D) + dk2P + dD2 + dPD), which
is linear to the number of [PATCH] tokens.

6

Neck

Det.Patch Tokens Det.

Head

Patch Tokens

Patch

Det.

Det.

Det.Patch

EPFF Module

Class.

Box Reg.

Mask Pred.

Fusion

Fusion

Fusion

Fused Multi-scale Tokens

Upsampling

Residual Unit

+Residual Unit

(Smoothing)

(Transform)

In (× 1/2 scale)

In (× 1 scale)

Out

(a) Fusion Block. (b) EPFF Module. (c) ViDT+.

Fig. 4. Architecture overview of ViDT+: (a) two inputs with different scales are fused by a fusion block, (b) multiple fusion blocks
are used in the EEFF module to mix multi-scale input tokens, returning their concatenated single output, and (c) the extended
ViDT+ equips the EEFF module for multi-scale feature fusion and the UQR module [23] for end-to-end multi-task learning.

Consequently, the computational complexity of
ViDT (RAM) is much lower than that of the attention
module used in YOLOS since D � P; RAM achieves the
linear complexity to the patch tokens, while YOLOS suffers
from the quadratic complexity.

4 VIDT+: EXTENSION TO MULTI-TASK LEARNING

The proposed ViDT significantly improves both the com-
putational complexity and the performance of the end-to-
end transformer-based detector. We additionally analyze
two drawbacks of ViDT; (1) The multi-scale PATCH tokens
are linearly fused, failing to extract complex complementary
information; (2) ViDT does not apply to other tasks, such
as instance segmentation. Resolving the two issues are not
trivial. For the former, we need to develop an efficient way
of fusing the features non-linearly without compromising
inference speed. For the latter, existing FPN-style networks
for DETR family detectors cannot be trained in an end-
to-end manner for multi-task learning [4]. We address the
drawbacks by adding three components, namely, Efficient
Pyramid Feature Fusion (EPFF), Unified Query Representa-
tion (UQR), and IoU-aware and Token Labeling Losses. The
method that incorporates all three components is referred to
as ViDT+, as illustreated in Figure 4(c).

4.1 Efficient Pyramid Feature Fusion Module

All the multi-scale [PATCH] tokens of ViDT are fed into the
encoder-free neck component of ViDT without any pro-
cessing. Then, the [PATCH] tokens are decoded into object
embeddings, i.e., the final [DET] tokens. As in Eq. (2), the
multi-scale deformable attention of the decoder fuses the
multi-scale [PATCH] tokens linearly via weighted aggregation,
but only a few sampled [PATCH] tokens (K tokens per scale)
are used for computational efficiency. We thus introduce a
simple but efficient pyramid feature fusion (EPFF) module,
which fuses all the available multi-scale tokens non-linearly
using multiple CNN fusion blocks before putting them into
the decoder, as illustrated in Figure 4(a) and 4(b). The
proposed EPFF extracts complementary information from
feature maps at different scales more effectively than the
previous simple linear aggregation.

Specifically, all the [PATCH] tokens with multiple scales
from the body’s different stages are assembled to form
multi-scale feature maps {xl}Ll=1 with the same size of

channel dimension4. Subsequently, they are fused in a top-
down manner. Each fusion block in Figure 4(a) receives two
input feature maps for pyramid feature fusion: (1) a feature
map xl for a target l-th scale (higher resolution) and (2) the
fused feature map from the predecessor fusion block for the
feature map xl+1 (lower resolution),

xlfuse =

smoothing︷ ︸︸ ︷
ResUnit

(interpolation︷ ︸︸ ︷
Upsample(xl+1

fuse) +

transform︷ ︸︸ ︷
ResUnit(xl)

)
, (3)

where the Upsample operator resizes the low-resolution
feature map to fuse with the high-resolution one via bilin-
ear interpolation, and the two ResUnits are the bottleneck
residual block for feature transform and feature smooth-
ing, respectively. As a result, fused multi-scale features
are obtained, flattened along the spatial dimension, and
concatenated for all scales as input to the neck decoder,
as shown in Figure 4(b). As analyzed in Section 5.1, this
module only adds 1M parameters and greatly increases de-
tection and segmentation accuracy without compromising
inference speed.

4.2 Unified Query Representation Module

Object detection facilitates joint supervision of multi-task
learning and instance segmentation [24], [25], [26]. Hence,
we add a unified query representation (UQR) module [23]
at the beginning of prediction heads, as shown on the right
side of Figure 4(c).

Unfortunately, [DET] tokens of the DETR-based ap-
proaches only correspond to objects to detect. Consequently,
[DET] tokens cannot be converted to 2D segmentation tasks,
and it makes DETR-based approaches fail to perform object
detection and instance segmentation tasks simultaneously
[23]. To address this issue, Dong et al. [23] propose the UQR
module, which transforms the ground-truth 2D binary mask
of each object into the frequency domain using discrete
cosine transform5 (DCT) [27], generating a ground-truth
mask vector per object to predict. Given a ground-truth
segmentation mask S, a ground-truth mask vector v is
encoded by sampling the low-frequency components from
F = ASA>, where A is the transform matrix. Hence, the

4. We use 256 channel dimension for compatibility with a typical
deformable transformer decoder [21].

5. Sparse coding and PCA can also be used for the conversion, but
DCT is reported to show the best instance segmentation results [23].

7

final [DET] tokens are used directly to predict the ground-
truth mask vector using a FFN, which outputs the predicted
mask vectors v̂. This procedure is conducted in parallel with
classification and box regression for multi-task learning. As
a result, the overall loss function for joint supervision can be
formulated as `joint = `det + λseg `l1(v, v̂), where λseg is a
coefficient for the instance segmentation task (see Appendix
A.4.2 for details). In addition, at evaluation and testing
time, the predicted mask vector v̂ can be converted to the
estimated 2D binary mask Ŝ through the inverse sampling
and transformation Ŝ = A−1F̂ (A>)−1, where F̂ is the
inverse sampling result from v̂.

4.3 IoU-aware and Token Labeling Losses
For dense prediction tasks, the model can capture more
diverse aspects of provided inputs when properly incorpo-
rating multiple independent objectives. Thus, we introduce
two additional objectives for training, namely IoU-aware
loss and token labeling loss, eventually leading to a consid-
erable performance gain with our proposed ViDT+ model.
Note that they do not slow down the model inference speed
at test time as they are activated only for training:
• IoU-aware Loss [8], [29]: Predicting the IoU score directly

using the final [DET] token helps increase detection con-
fidence, alleviating the mismatch between expected and
ground-truth bounding boxes. Hence, we add a new FFN
branch to predict the IoU score between the predicted
bounding box b̂i and ground-truth one bi. Then, the IoU-
aware loss is formulated as

`aware =
1

B

B∑
i=1

BCE
(
FFN([DET]i), IoU(bi, b̂i)

)
, (4)

where [DET]i is the final [DET] token (returning from the
neck decoder) corresponding to the i-th object; and B and
BCE are the total number of objects in the input image
and binary cross-entropy loss function, respectively.

• Token Labeling Loss [9], [29]: Token labeling allows to
solve multiple token-level recognition problems by as-
signing each [PATCH] token with an individual location-
specific supervision generated by a machine annotator.
Here, we leverage the ground-truth segmentation mask to
assign the location-specific class label per [PATCH] token.
First, the segmentation mask is interpolated to align with
the resolution of the feature map generated from the l-
th stage of the body (i.e., the resolution of xl); hence, the
interpolated mask Sl is regarded as token-level soft class
labels for the l-th feature map. Then, the token labeling
loss is formulated as

`token =
1

L

L∑
l=1

1

P l

P l∑
i=1

Focal
(

FFN
(
[PATCH]li

)
,Sl[i]

)
, (5)

where [PATCH]li is the i-th [PATCH] token in the feature
map xl from the l-th stage of the body, and Sl[i] returns
the token-level soft label corresponding to the [PATCH]li
token; and L and P l is the number of scales and tokens
in the feature map xl, respectively. Focal is the focal loss
function [30] and FFN is the classification layer.
These two losses are added with their respective coef-

ficients to the joint learning loss if activated. We detail the
complete objective of ViDT+ in Appendix A.4.2.

5 EVALUATION

In this section, we present thorough experimental results
with evaluations against the state-of-the-art approaches.

Dataset. We carry out object detection experiments on the
Microsoft COCO 2017 benchmark dataset [12]. All the
fully transformer-based object detectors are trained on 118K
training images and tested on 5K validation images follow-
ing the standard setups [4].

Algorithms. We evaluate ViDT and ViDT+ against two
fully transformer-based object detection pipelines, namely
DETR (ViT) and YOLOS. Since DETR (ViT) follows the gen-
eral pipeline of (Deformable) DETR by replacing its ResNet
backbone with other ViT variants, we use one original ViT
and one latest ViT variant, DeiT and Swin Transformer as its
backbone without any modification. As YOLOS is strongly
coupled with the original ViT architecture, only DeiT is used
for evaluation. Table 2 summarizes all the ViT models pre-
trained on ImageNet used for evaluation. Note that publicly
available pre-trained models are used except for Swin-nano.
In addition, we configure Swin-nano6 comparable to DeiT-
tiny, which is trained on ImageNet with the identical setting.
Overall, with respect to the number of parameters, Deit-tiny,
-small, and -base are comparable to Swin-nano, -tiny, and -
base, respectively. More details on the evaluated detectors
are presented in Appendix A.2.

Implementation Details. All the algorithms are imple-
mented using PyTorch and executed using four NVIDIA
Tesla A100 GPUs. We train ViDT and ViDT+ using AdamW
[31] with the same initial learning rate of 10−4 for its body,
neck and head. In contrast, following the (Deformable)
DETR setting, DETR (ViT) is trained with the initial learning
rate of 10−5 for its pre-trained body (ViT backbone) and
10−4 for its neck and head. YOLOS and ViDT (w.o. Neck) are
trained with the same initial learning rate of 5×10−5, which
is the original setting of YOLOS for the neck-free detector.
We do not change any hyperparameters used in the trans-
former encoder and decoder for (Deformable) DETR; thus,
the neck decoder of ViDT also consists of six deformable
transformer layers using exactly the same hyperparameters.
The number of learnable [DET] tokens are set to be 100
and 300 for ViDT and ViDT+, respectively. The effect of
different number of [DET] tokens are discussed in Section
5.3.1. Auxiliary decoding loss and iterative box refinement
are applied to the compared methods if applicable.

Regarding the resolution of input images, we use scale
augmentation that resizes them such that the shortest side
is at least 480 and at most 800 pixels while the longest is at
most 1333 [20]. More details of the experiment configuration
can be found in Appendix A.3–A.5. All the source code and
trained models will be made available to the public at https:
//github.com/naver-ai/vidt.

5.1 Experiments with Microsoft COCO Benchmark
5.1.1 Object Detection
Table 3 shows evaluation results in terms of APbox, FPS, and
number of parameters, where two variants of DETR (ViT)

6. Swin-nano is designed such that the number of channels in the
hidden layer is half that of Swin-tiny. Please see Appendix A.1.

https://github.com/naver-ai/vidt
https://github.com/naver-ai/vidt

8

TABLE 2. Summary on the ViT backbone. “dist.” is the distillation strategy for classification [28].
Backbone Type (Size) Train Data Epochs Resolution Params ImageNet Acc.

DeiT
DeiT-tiny (dist.) ImageNet-1K 300 224× 224 6M 74.5
DeiT-small (dist.) ImageNet-1K 300 224× 224 22M 81.2
DeiT-base (dist.) ImageNet-1K 300 384× 224 87M 85.2

Swin Transformer

Swin-nano ImageNet-1K 300 224× 224 6M 74.9
Swin-tiny ImageNet-1K 300 224× 224 28M 81.2
Swin-small ImageNet-1K 300 224× 224 50M 83.2
Swin-base ImageNet-22K 90 224× 224 88M 86.3

TABLE 3. Comparison of ViDT and ViDT+ with other compared detectors on COCO2017 val set. Two neck-free detectors, YOLOS
and ViDT (w.o. Neck) are trained for 150 epochs due to the slow convergence. FPS is measured with batch size 1 of 800 × 1333
resolution on a single Tesla A100 GPU, where the value inside the parentheses is measured with batch size 4 of the same resolution
to maximize GPU utilization.

Method Backbone Epochs APbox APbox
50 APbox

75 APbox
S APbox

M APbox
L Param. FPS

DETR

DeiT-tiny 50 30.0 49.2 30.5 9.9 30.8 50.6 23M 24.4 (28.5)
DeiT-small 50 32.4 52.5 33.2 11.3 33.5 53.7 39M 17.8 (20.3)
DeiT-base 50 37.1 59.2 38.4 14.7 39.4 52.9 104M 11.1 (14.2)
Swin-nano 50 27.8 47.5 27.4 9.0 29.2 44.9 24M 50.6 (86.1)
Swin-tiny 50 34.1 55.1 35.3 12.7 35.9 54.2 45M 39.9 (58.6)
Swin-small 50 37.6 59.0 39.0 15.9 40.1 58.9 66M 28.7 (39.2)
Swin-base 50 40.7 62.9 42.7 18.3 44.1 62.4 104M 23.4 (30.9)

Deformable
DETR

DeiT-tiny 50 40.8 60.1 43.6 21.4 43.4 58.2 18M 25.1 (36.4)
DeiT-small 50 43.6 63.7 46.5 23.3 47.1 62.1 34M 18.0 (24.0)
DeiT-base 50 46.4 67.3 49.4 26.7 50.1 65.4 99M 11.3 (13.8)
Swin-nano 50 43.1 61.4 46.3 25.9 45.2 59.4 18M 14.6 (17.2)
Swin-tiny 50 47.0 66.8 50.8 28.1 49.8 63.9 39M 13.4 (15.7)
Swin-small 50 49.0 68.9 52.9 30.3 52.8 66.6 60M 11.9 (13.9)
Swin-base 50 51.4 71.7 56.2 34.5 55.1 67.5 98M 10.9 (12.7)

YOLOS
DeiT-tiny 150 30.4 48.6 31.1 12.4 31.8 48.2 6M 52.5 (61.3)
DeiT-small 150 36.1 55.7 37.6 15.6 38.4 55.3 30M 14.0 (24.8)
DeiT-base 150 42.0 62.2 44.5 19.5 45.3 62.1 104M 7.0 (12.2)

ViDT
(w.o. Neck)

Swin-nano 150 28.7 48.6 28.5 12.3 30.7 44.1 7M 72.4 (96.9)
Swin-tiny 150 36.3 56.3 37.8 16.4 39.0 54.3 29M 51.8 (60.4)
Swin-small 150 41.6 62.7 43.9 20.1 45.4 59.8 52M 33.5 (38.4)
Swin-base 150 43.2 64.2 45.9 21.9 46.9 63.2 91M 26.3 (29.6)

ViDT

Swin-nano 50 40.4 59.6 43.3 23.2 42.5 55.8 15M 40.8 (76.0)
Swin-tiny 50 44.8 64.5 48.7 25.9 47.6 62.1 37M 33.5 (51.2)
Swin-small 50 47.5 67.7 51.4 29.2 50.7 64.8 60M 24.7 (34.6)
Swin-base 50 49.2 69.4 53.1 30.6 52.6 66.9 99M 20.5 (27.1)

ViDT+

Swin-nano 50 45.3 62.3 48.9 27.3 48.2 61.5 16M 37.6 (69.3)
Swin-tiny 50 49.7 67.7 54.2 31.6 53.4 65.9 38M 30.4 (47.6)
Swin-small 50 51.2 69.5 55.9 33.8 54.5 67.8 61M 22.6 (32.4)
Swin-base 50 53.2 71.6 58.3 36.0 57.1 69.2 100M 19.3 (25.7)

are simply named DETR and Deformable DETR, respec-
tively. A summary plot is also provided in Figure 1.

Highlights. Among detection-only methods, ViDT achieves
the best trade-off between APbox and FPS. With its high
scalability, it performs well even with Swin-base of 0.1 bil-
lion parameters, which is 2x faster than Deformable DETR
with similar APbox. In addition, ViDT shows 40.4APbox only
with 15M parameters; it is 6.3–12.6APbox higher than those
of DETR (swin-nano) and DETR (swin-tiny), which exhibit
similar FPS of 39.9–50.6. ViDT+ shows considerable APbox

improvements over the vanilla ViDT with a little decrease
in FPS. For example, ViDT+ (swin-nano) achieves 45.3APbox

only with 16M parameters, which is even higher than that
of ViDT (swin-tiny) with 37M parameters. In particular, to
the best of our knowledge, 53.2APbox of VIDT+ (Swin-base)
is the highest among existing fully transformer-based detec-
tors. In the detailed analysis below, we only compare the

vanilla ViDT with other detection-only architectures since
ViDT+ requires multiple extended modules, such as EPFF
and UQR, and leverages extra knowledge from instance
segmentation.

ViDT vs. Deformable DETR. Thanks to the use of multi-
scale features, Deformable DETR exhibits high detection
performance in general. Nevertheless, its encoder and
decoder structure in the neck becomes a critical bottleneck
in computation. In particular, the encoder with multi-layer
deformable transformers adds considerable overhead to
transform multi-scale features by attention. Thus, it achieves
low FPS although it achieves higher APbox with a relatively
small number of parameters. In contrast, ViDT removes the
need for a transformer encoder in the neck by using the
Swin Transformer with RAM as its body, directly extracting
multi-scale features suitable for object detection.

ViDT (w.o. Neck) vs. YOLOS. For the comparison with

9

TABLE 4. Evaluations of ViDT with DETR and Deformable DETR using the CNN backbone (ResNet-50) on COCO2017 val set.

Method Backbone Epochs APbox APbox
50 APbox

75 APbox
S APbox

M APbox
L Param. FPS

DETR ResNet-50 500 42.0 62.4 44.2 20.5 45.8 61.1 41M 54.1 (99.3)
DETR-DC5 ResNet-50 500 43.3 63.1 45.9 22.5 47.3 61.1 41M 29.7 (34.3)
DETR-DC5 ResNet-50 50 35.3 55.7 36.8 15.2 37.5 53.6 41M 29.7 (34.3)
Deformable DETR ResNet-50 50 45.4 64.7 49.0 26.8 48.3 61.7 40M 27.2 (43.6)

ViDT Swin-tiny 50 44.8 64.5 48.7 25.9 47.6 62.1 37M 33.5 (51.2)
ViDT Swin-tiny 150 47.2 66.7 51.4 28.4 50.2 64.7 37M 33.5 (51.2)

TABLE 5. Comparison of ViDT+ with other multi-task learning methods for instance segmentation on COCO2017 val set. To
distinguish AP for detection and segmentation, we put ‘seg’ and ‘box’ superscripts into AP at the first row, respectively. Except
ViDT+, all the results are borrowed from [23].

Method Backbone Epochs APseg APseg
S APseg

M APseg
L APbox APbox

S APbox
M APbox

L

Mask R-CNN [24] ResNet-50+FPN 36 37.5 21.1 39.6 48.3 41.3 24.2 43.6 51.7
HTC [32] ResNet-50+FPN 36 39.7 22.6 42.2 50.6 44.9 - - -
SOLOv2 [33] ResNet-50+FPN 72 38.8 16.5 41.7 56.2 40.4 20.5 44.2 53.9
QueryInst [34] ResNet-50+FPN 36 40.6 23.4 42.5 52.8 45.6 - - -
SOLQ [23] ResNet50 50 39.7 21.5 42.5 53.1 47.8 27.6 50.9 61.6

ViDT+ Swin-tiny 50 39.5 21.5 43.4 58.2 49.7 31.6 53.4 65.9

Mask R-CNN [24] ResNet-101+FPN 36 38.8 21.8 41.4 50.5 41.3 24.2 43.6 51.7
HTC [32] ResNet-101+FPN 36 40.8 23.0 43.5 52.6 44.3 - - -
SOLOv2 [33] ResNet-101+FPN 72 39.7 17.3 42.9 57.4 42.6 22.3 46.7 56.3
QueryInst [34] ResNet-101+FPN 36 42.8 24.6 45.0 55.5 48.1 - - -
SOLQ [23] ResNet-101 50 40.9 22.5 43.8 54.6 48.7 28.6 51.7 63.1

ViDT+ Swin-small 50 40.8 22.6 44.3 60.1 51.2 33.8 54.5 67.8

TABLE 6. AP and FPS comparison with different selective cross-attention strategies.
Stage Ids {1, 2, 3, 4} {2, 3, 4} {3, 4} {4} { }
Metric APbox FPS APbox FPS APbox FPS APbox FPS APbox FPS

ViDT w.o. Neck 29.0 46.9 28.8 55.2 28.5 59.5 28.7 72.4 FAIL 75.8
ViDT w. Neck 40.3 31.6 40.1 34.2 40.3 36.1 40.4 40.8 37.1 41.2

TABLE 7. Results for different spatial encodings for [DET] ×
[PATCH] cross-attention.

Method None Pre-addition Post-addition
Type None Sin. Learn. Sin. Learn.

APbox 23.7 28.7 27.4 28.0 24.1

YOLOS, we train ViDT without using its neck component.
These two neck-free detectors achieve relatively low APbox

compared with other detectors in general. In terms of speed,
YOLOS exhibits much lower FPS than ViDT (w.o. Neck)
because of its quadratic computational complexity for at-
tention. However, as ViDT (w.o. Neck) extends the Swin
Transformers with RAM, it requires linear complexity for
attention. Hence, it achieves comparable APbox as YOLOS
for various backbone sizes, but with higher FPS.

Comparison with Other Possible Integration. It is of
great interest to see whether better integration can also be
achieved by (1) Deformable DETR without its neck encoder
as its neck decoder also has [DET]× [PATCH] cross-attention,
or (2) YOLOS with VIDT’s neck decoder because of the use
of multiple auxiliary techniques. Such integration is actually
not effective; the former significantly drops APbox, while the
latter has a much greater drop in FPS than an increase in
APbox. The detailed analysis can be found in Appendix B.2.

Comparison with Detectors using CNN Backbone. We
compare ViDT with (Deformable) DETR using the ResNet-
50 backbone, as summarized in Table 4, where all the results
except ViDT are borrowed from [4], [21], and DETR-DC5 is a

TABLE 8. Effect of auxiliary decoding loss and iterative box
refinement loss with YOLOS (DeiT-tiny) and ViDT (Swin-nano).

Aux. ` Box Ref. Neck APbox ∆

YOLOS
30.4

X 29.2 −1.2
X X 20.1 −10.3

ViDT

28.7
X 27.2 −1.6
X X 22.9 −5.9
X X 36.2 +7.4
X X X 40.4 +11.6

modification of DETR to use a dilated convolution at the last
stage in ResNet. For fair comparisons, we use ViDT (Swin-
tiny) with similar parameter numbers in the following ex-
periments. In general, ViDT shows better trade-offs between
APbox and FPS even compared with (Deformable) DETR
with the ResNet-50. Specifically, ViDT achieves consider-
ably higher FPS than those of DETR-DC5 and Deformable
DETR with competitive APbox. When training ViDT for 150
epochs, ViDT outperforms other compared methods using
the ResNet-50 backbone in terms of both APbox and FPS.

5.1.2 Instance Segmentation

Table 5 shows evaluation results of ViDT+ with other meth-
ods for multi-task learning of object detection and instance
segmentation, based on APbox and APseg . For fair compar-
isons w.r.t the number of parameters, Swin-tiny and Swin-

10

TABLE 9. Effect of additional losses and modules for ViDT+ with Swin-nano.
IoU-aware Token Label EPFF UQR Epoch APbox APbox

50 APbox
75 APbox

S APbox
M APbox

L Param. FPS
50 40.4 59.6 43.3 23.2 42.5 55.8 15M 40.8 (76.0)

X 50 41.0 59.5 44.1 22.8 43.7 56.7 15M 40.8 (76.0)
X X 50 41.2 59.5 44.4 23.5 44.0 57.5 15M 40.8 (76.0)
X X X 50 42.5 60.9 45.3 23.5 45.3 59.0 16M 37.6 (69.3)
X X X X 50 45.3 62.3 48.9 27.3 48.2 61.5 16M 37.6 (69.3)

TABLE 10. Performance change with different number of detec-
tion tokens regarding APbox, Param, and FPS.

Model ViDT (Swin-nano) ViDT (Swin-tiny)
Metric APbox Param. FPS APbox Param. FPS
100 Tokens 40.4 15M 40.8 44.8 37M 33.5
300 Tokens 42.1 15M 40.4 46.7 38M 33.0
500 Tokens 42.3 16M 40.0 46.9 38M 32.4

TABLE 11. Performance change with different number of train-
ing epochs regarding APbox, Param, and FPS.

Model ViDT (Swin-nano) ViDT (Swin-tiny)
Metric APbox Param. FPS APbox Param. FPS
50 Epochs 40.4 15M 40.8 44.8 37M 33.5

150 Epochs 42.6 15M 40.8 47.2 37M 33.5

small backbones are used for ViDT+, which have similar
numbers of parameters to ResNet-50 and ResNet-101.

For the instance segmentation task, ViDT+ obtains
APseg comparable to the state-of-the-art methods, such as
QueryInst [34], and SOLQ [23]. It is noteworthy that ViDT+
achieves the best segmentation performance for medium-
and large-size objects, although it is not the best for small-
size objects. This can be attributed to that vector encoding
of the 2D segmentation mask using DTC loses detailed in-
formation about small objects. In addition, ViDT+ achieves
a considerable gain for the object detection task, which can
be justified by its APbox much higher than other multi-task
learning methods. Quantitatively, the detection performance
of ViDT+ is 1.9–9.9APbox higher than other methods. These
results show that ViDT can be easily extended to ViDT+
with better detection performance.

5.2 Ablation Study
5.2.1 Reconfigured Attention Module
We extend the Swin Transformer with RAM to extract fine-
grained features for object detection without maintaining an
additional transformer encoder in the neck. We provide an
ablation study on the two main considerations for RAM,
which lead to high accuracy and speed. To reduce the effect
of secondary factors, we mainly use our neck-free version,
ViDT (w.o. Neck), for the ablation study.

Selective [DET] × [PATCH] Cross-Attention. The addition of
cross-attention to the Swin Transformer inevitably entails
computational overheads, particularly when the number of
[PATCH] is large. To alleviate such overheads, we selectively
enable cross-attention in RAM at the last stage of the Swin
Transformer; this is shown to greatly improve FPS, but
barely drop APbox. Table 6 summarizes APbox and FPS when
using different selective strategies for the cross-attention,
where the Swin Transformer consists of four stages. It is
interesting that all the strategies exhibit similar APbox as
long as cross-attention is activated at the last stage. Since

TABLE 12. Performance trade-off by decoding layer drop re-
garding APbox, Param, and FPS.

Model ViDT (Swin-nano) ViDT (Swin-tiny)
Metric APbox Param. FPS APbox Param. FPS
0 Drop 40.4 15M 40.8 44.8 37M 33.5
1 Drop 40.2 14M 43.7 44.8 36M 35.2
2 Drop 40.0 13M 46.7 44.5 35M 36.7
3 Drop 38.6 12M 48.8 43.6 34M 38.5
4 Drop 36.8 11M 55.3 41.9 33M 41.0
5 Drop 32.5 9M 57.6 38.0 32M 43.2

features are extracted in a bottom-up manner as they go
through the stages, it seems difficult to directly obtain useful
information about the target object at the low level of stages.
Thus, only using the last stage is the best design choice in
terms of high APbox and FPS due to the smallest number of
[PATCH] tokens. Meanwhile, the detection fails completely
or the performance significantly drops if all the stages are
not involved due to the lack of interaction between [DET]
and [PATCH] tokens that spatial positional encoding is as-
sociated with. A more detailed analysis of the cross- and
self-attention is provided in appendices B.3 and B.4.

Spatial Positional Encoding. Spatial positional encoding is
essential for [DET] × [PATCH] attention in RAM. Typically,
the spatial encoding can be added to the [PATCH] tokens
before or after the projection layer (see Figure 3), and we call
the former “pre-addition” and the latter “post-addition”.
For each one, we can design the encoding in a sinusoidal
or learnable manner [4]. Table 7 contrasts the results with
different spatial positional encodings with ViDT (w.o. Neck).
Overall, pre-addition results in performance improvement
higher than post-addition, and specifically, the sinusoidal
encoding is better than the learnable one. Thus, the 2D
inductive bias of the sinusoidal spatial encoding is more
helpful in object detection. In particular, pre-addition with
the sinusoidal encoding increases APbox by 5.0 compared to
not using any encoding.

5.2.2 Auxiliary Decoding and Iterative Box Refinement
We analyze the performance improvement of auxiliary
decoding loss and iterative box refinement. To validate the
efficacy of these two modules, we extend them for the neck-
free detector such as YOLOS where each is applied to the
encoding layers in the body, as opposed to the conventional
way of using the decoding layers in the neck. Table 8 shows
the performance of the two neck-free detectors, YOLOS
and ViDT (w.o. Neck), decreases considerably with the two
techniques. The use of these two modules in the encoding
layers is likely to negatively affect the feature extraction
of the transformer encoder. In contrast, an opposite trend
is observed with the neck component. Since the neck
decoder is decoupled with the feature extraction in the
body, the two techniques make a synergistic effect and

11

TABLE 13. Complete component analysis. “Brown” and “Teal” colors indicate the performance of vanilla ViDT and its extension
to ViDT+, respectively. “Violet” color indicates the performance of fully optimized ViDT+.

ViDT+ (Swin-nano) ViDT+ (Swin-tiny) ViDT+ (Swin-small)
Added Module/Technique APbox Param. FPS APbox Param. FPS APbox Param. FPS

(1) + RAM 28.7 7M 72.4 36.3 29M 51.8 41.6 52M 33.5
(2) + Encoder-free Neck 40.4 15M 40.8 44.8 37M 33.5 47.5 60M 24.7
(3) + IoU-aware & Token Label 41.0 15M 40.8 45.9 37M 33.5 48.5 60M 24.7
(4) + EPFF Module 42.5 16M 38.0 47.1 38M 30.9 49.3 61M 23.0
(5) + UQR Module 43.9 16M 38.0 47.9 38M 30.9 50.1 61M 23.0
(6) + 300 [DET] Tokens 45.3 16M 37.6 49.7 38M 30.4 51.2 61M 22.6
(7) + 150 Training Epochs 47.6 16M 37.6 51.4 38M 30.4 52.3 61M 22.6
(8) + Decoding Layer Drop 47.0 14M 41.9 50.8 36M 33.9 51.8 59M 24.6

thus show significant improvements in APbox. These results
demonstrate the use of the neck decoder in ViDT to improve
object detection performance.

5.2.3 Components for extension to ViDT+
For the extension to ViDT+, two additional modules are
incorporated on top of the vanilla ViDT, i.e., EPFF module
for pyramid feature fusion and UQR module for multi-task
learning, and also two independent objectives are added
for better optimization, i.e., IoU-aware and token labeling
losses. Table 9 summarizes the performance improvement
of ViDT (Swin-nano) when adding them incrementally to
the vanilla ViDT; the trend of performance improvement is
almost the same for Swin backbones of difference sizes. IoU-
aware and token labeling losses are added first since they
do not affect the inference time. Then, the remaining EPFF
and UQR modules are added to support effective multi-task
learning. With the Swin-nano backbone, the extension to
ViDT+ only adds 1M parameters but APbox improves from
40.4 to 45.3. This is a significant performance gain for the
better trade-off between accuracy and speed, considering
that the runtime performance dropped by 3.2 FPS.

5.3 Optimization to Performance Boosting
The number of detection tokens and training epochs affect
the detection performance w.r.t APbox and FPS. Hence, we
analyze the performance change by using different numbers
of them. In addition, we introduce a decoding layer drop-
ping scheme, which further increases the FPS of the ViDT
model by simply dropping a few decoding layers in the
neck component without compromising APbox.

5.3.1 Increasing the Number of Detection Tokens
Table 10 shows the performance change of ViDT with
different number of [DET] tokens. When used 200 more
[DET] tokens, i.e., 300 tokens, the detection accuracy of ViDT
improves by 1.7–1.9APbox with little increase in FPS. Thus,
the accuracy gain outweighs the loss of efficiency. However,
there is only a slight improvement in APbox when using 500
[DET] rather than 300 [DET] tokens, although FPS decreases
almost linearly. Therefore, we can use 300 [DET] tokens for a
better trade-off between accuracy and speed.

5.3.2 Increasing the Number of Training Epochs
Table 11 shows the performance of ViDT trained with a
different number of epochs. The increase in the number
of training epochs provides performance improvement in
ViDT. When used 3 times longer training epochs, i.e., 50

epochs → 150 epochs, the detection accuracy of ViDT im-
proves by 2.2–2.4APbox without any performance drop in
FPS. When the computational budget allows, ViDT has the
potential to achieve better detection performance. We report
the performance of ViDT+ with longer training epochs in
our complete analysis of Section 5.4.

5.3.3 Decoding Layer Dropping
ViDT has six layers of transformers as its neck decoder. We
emphasize that not all layers of the decoder are required
at inference time for high performance. Table 12 shows the
performance of ViDT when dropping its decoding layer one
by one from the top in the inference step. Although there
is a trade-off relationship between accuracy and speed as
the layers are detached from the model, there is no signif-
icant APbox drop even when the two layers are removed.
Although this scheme is not designed for performance eval-
uation with other methods in Table 3 with other methods,
we can accelerate the inference speed of a trained ViDT
model to over 10% by dropping its two decoding layers
without a much decrease in APbox.

5.4 Complete Component Analysis

In this section, we combine all the proposed components
(even with longer training epochs and decoding layer drop)
to achieve high accuracy and speed for object detection.
As summarized in Table 13, there are eight components for
extension: (1) RAM to extend Swin Transformer as a stan-
dalone object detector, (2) the neck decoder to exploit multi-
scale features with two auxiliary techniques, (3) the IoU-
aware and token labeling losses for fine-grained supervision
per token, (4) the EPFF module to fuse multi-scale features
non-linearly via pyramid feature fusion, (5) the UQR model
for extra supervision from multi-task learning, (6) the use of
more detection tokens, (7) the use of longer training epochs,
and (8) decoding layer drop to further accelerate inference
speed. For the full model, it achieves 47.0APbox with very
high FPS by only using 14M parameters when using Swin-
nano as its backbone. Further, it achieves 50.8–51.8APbox

with reasonable FPS when using Swin-tiny and Swin-small
backbones. This indicates that a fully transformer-based
object detector has the potential to be used as a generic
object detector when further developed in the future.

6 CONCLUSION

In this work, we explore the integration of vision and
detection transformers to build an effective and efficient

12

object detector. The proposed ViDT significantly improves
the scalability and flexibility of transformer models
to achieve high accuracy and inference speed. The
computational complexity of its attention modules is linear
w.r.t. image size, and ViDT synergizes several essential
techniques to boost the detection performance. Further,
it can be easily extended to support multi-task learning
of object detection and instance segmentation. The joint
learning framework named ViDT+ improves its detection
performance considerably without compromising its
efficiency. On the Microsoft COCO benchmark, ViDT+
achieves 53.2APbox with a large Swin-base backbone, and
47.0APbox with the smallest Swin-nano backbone using
only 14M parameters, suggesting the potential of using the
proposed model for complex computer vision tasks.

REFERENCES

[1] C. Papageorgiou and T. Poggio, “A trainable system for object
detection,” International Journal of Computer Vision, vol. 38, no. 1,
pp. 15–33, 2000. 1, 2

[2] L. Liu, W. Ouyang, X. Wang, P. Fieguth, J. Chen, X. Liu, and
M. Pietikäinen, “Deep learning for generic object detection: A
survey,” International Journal of Computer Vision, vol. 128, no. 2,
pp. 261–318, 2020. 1, 2

[3] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
in NeurIPS, 2017. 1, 5, 3

[4] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and
S. Zagoruyko, “End-to-end object detection with transformers,” in
ECCV, 2020. 1, 3, 5, 6, 7, 9, 10

[5] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly
et al., “An image is worth 16x16 words: Transformers for image
recognition at scale,” in ICLR, 2021. 1, 3

[6] Y. Fang, B. Liao, X. Wang, J. Fang, J. Qi, R. Wu, J. Niu, and W. Liu,
“You only look at one sequence: Rethinking transformer in vision
through object detection,” arXiv preprint arXiv:2106.00666, 2021. 2,
3, 1

[7] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo,
“Swin Transformer: Hierarchical vision transformer using shifted
windows,” in ICCV, 2021. 2, 3, 5

[8] S. Wu, X. Li, and X. Wang, “Iou-aware single-stage object detector
for accurate localization,” Image and Vision Computing, vol. 97, p.
103911, 2020. 2, 7

[9] Z.-H. Jiang, Q. Hou, L. Yuan, D. Zhou, Y. Shi, X. Jin, A. Wang,
and J. Feng, “All tokens matter: Token labeling for training better
vision transformers,” in NeurIPS, 2021. 2, 7

[10] W. Xu, Y. Xu, T. Chang, and Z. Tu, “Co-scale conv-attentional
image transformers,” in ICCV, 2021. 2

[11] W. Wang, E. Xie, X. Li, D.-P. Fan, K. Song, D. Liang, T. Lu, P. Luo,
and L. Shao, “Pvtv2: Improved baselines with pyramid vision
transformer,” Computational Visual Media, vol. 8, no. 3, pp. 1–10,
2022. 2

[12] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft COCO: Common objects in
context,” in ECCV, 2014. 2, 7

[13] H. Song, D. Sun, S. Chun, V. Jampani, D. Han, B. Heo, W. Kim, and
M.-H. Yang, “Vidt: An efficient and effective fully transformer-
based object detector,” in ICLR, 2022. 2

[14] Y. Li, H. Mao, R. Girshick, and K. He, “Exploring plain vi-
sion transformer backbones for object detection,” arXiv preprint
arXiv:2203.16527, 2022. 2

[15] Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun, “Yolox: Exceeding yolo
series in 2021,” arXiv preprint arXiv:2107.08430, 2021. 2

[16] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg, “SSD: Single shot multibox detector,” in ECCV, 2016,
pp. 21–37. 2

[17] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in CVPR, 2016, pp. 779–
788. 2

[18] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards
real-time object detection with region proposal networks,” in
NeurIPS, 2015. 2, 3

[19] B. Heo, S. Yun, D. Han, S. Chun, J. Choe, and S. J. Oh, “Rethinking
spatial dimensions of vision transformers,” in ICCV, 2021. 3, 1

[20] Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick, “Detec-
tron2,” https://github.com/facebookresearch/detectron2, 2019.
3, 7

[21] X. Zhu, W. Su, L. Lu, B. Li, X. Wang, and J. Dai, “Deformable
DETR: Deformable transformers for end-to-end object detection,”
in ICLR, 2021. 3, 5, 6, 9, 1

[22] H. Hu, Z. Zhang, Z. Xie, and S. Lin, “Local relation networks for
image recognition,” in CVPR, 2019. 4

[23] B. Dong, F. Zeng, T. Wang, X. Zhang, and Y. Wei, “SOLQ: Seg-
menting objects by learning queries,” in NeurIPS, 2021. 6, 9, 10

[24] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” in
ICCV, 2017. 6, 9

[25] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik, “Simultaneous
detection and segmentation,” in ECCV, 2014. 6

[26] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Region-based
convolutional networks for accurate object detection and segmen-
tation,” IEEE transactions on pattern analysis and machine intelligence,
vol. 38, no. 1, pp. 142–158, 2015. 6

[27] N. Ahmed, T. Natarajan, and K. R. Rao, “Discrete cosine trans-
form,” IEEE transactions on Computers, vol. 100, no. 1, pp. 90–93,
1974. 6

[28] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and
H. Jégou, “Training data-efficient image transformers & distilla-
tion through attention,” in ICML, 2021. 8

[29] J. Lin, X. Mao, Y. Chen, L. Xu, Y. He et al., “D2ETR: Decoder-only
detr with computationally efficient cross-scale attention,” 2021. 7

[30] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for
dense object detection,” in CVPR, 2017. 7, 1

[31] I. Loshchilov and F. Hutter, “Decoupled weight decay regulariza-
tion,” in ICLR, 2019. 7, 2

[32] K. Chen, J. Pang, J. Wang, Y. Xiong, X. Li, S. Sun, W. Feng,
Z. Liu, J. Shi, W. Ouyang et al., “Hybrid task cascade for instance
segmentation,” in CVPR, 2019. 9

[33] X. Wang, R. Zhang, T. Kong, L. Li, and C. Shen, “Solov2: Dynamic
and fast instance segmentation,” in NeurIPS, 2020. 9

[34] Y. Fang, S. Yang, X. Wang, Y. Li, C. Fang, Y. Shan, B. Feng, and
W. Liu, “Instances as queries,” in ICCV, 2021. 9, 10

[35] W. Wang, E. Xie, X. Li, D.-P. Fan, K. Song, D. Liang, T. Lu, P. Luo,
and L. Shao, “Pyramid vision transformer: A versatile backbone
for dense prediction without convolutions,” in ICCV, 2021. 1

[36] C.-F. Chen, Q. Fan, and R. Panda, “CrossViT: Cross-attention
multi-scale vision transformer for image classification,” in ICCV,
2021. 1

[37] H. Rezatofighi, N. Tsoi, J. Gwak, A. Sadeghian, I. Reid, and
S. Savarese, “Generalized intersection over union: A metric and
a loss for bounding box regression,” in CVPR, 2019. 1

Hwanjun Song is a Research Scientist at the
NAVER AI Lab. He worked as a Research Intern
at Google Research in 2020 and received his
Ph.D. degree in the Graduate School of Data
Science from KAIST, Daejeon, Korea, in 2021.
He is interested in designing advanced method-
ologies to handle data scale and quality issues,
which are two main real-world challenges for AI.
He was sponsored by Microsoft through Azure
for Research from 2016 to 2018, and received
the Qualcomm Innovation Award in 2019.

Deqing Sun is a staff research scientist
and manager at Google working on com-
puter vision and machine learning. He re-
ceived a Ph.D. degree in Computer Sci-
ence from Brown University. He served as
an area chair for CVPR/ECCV/BMVC, and
co-organized several workshops/tutorials at
CVPR/ECCV/SIGGRAPH. He is a recipient of
the best paper honorable mention award at
CVPR 2018, the first prize in the robust optical
flow competition at CVPR 2018 and ECCV 2020,

the PAMI Young Researcher award in 2020, and the Longuet-Higgins
prize at CVPR 2020.

https://github.com/facebookresearch/detectron2

13

Sanghyuk Chun is a lead research scientist at
the NAVER AI Lab. He was a research engineer
at an advanced recommendation team in Kakao
Corp from 2016 to 2018. He received his Mas-
ter’s and Bachelor’s degrees in Electronical En-
gineering from KAIST, Daejeon, Korea, in 2016
and 2014, respectively. His research interests
focus on reliable machine learning and vision-
and-language.

Varun Jampani is a researcher at Google Re-
search working in the areas of machine learn-
ing and computer vision. His main research
interests include self-supervised visual discov-
ery, content-adaptive neural networks, and novel
view synthesis. He obtained his PhD with high-
est honors at MPI for Intelligent Systems, Ger-
many. He obtained his BTech and MS from IIIT-
Hyderabad, India, where he was a gold medal-
ist. He received Best Paper Honorable Mention
award at CVPR2018.

Dongyoon Han is a lead research scientist at
NAVER AI Lab. His current research interests lie
in machine learning and computer vision, in par-
ticular, novel deep neural networks design and
training methods. He received his B.S., M.S.,
and Ph.D. degrees in electrical engineering from
Korea Advanced Institute of Science and Tech-
nology, Daejeon, South Korea, in 2011, 2013,
and 2018, respectively.

Byeongho Heo received the bachelor’s and
Ph.D. degrees in electrical engineering and com-
puter science from Seoul National University,
Seoul, South Korea, in 2012 and 2019, respec-
tively. In 2019, he joined the AI LAB, NAVER
Corporation, as a Research Scientist, where he
is currently working. His current research inter-
ests include vision transformer, knowledge dis-
tillation, image classification, and optimizer for
deep learning.

Wonjae Kim is a research scientist at NAVER
AI Lab. Before joining NAVER, He worked as
a research scientist at Kakao corporation from
2018 to 2021. He received his Master’s and
Bachelor’s degrees in computer science and en-
gineering from Seoul national university, in 2018
and 2016, respectively. His research interests in-
clude vision-and-language representation learn-
ing, human-computer interaction, and informa-
tion visualization.

Ming-Hsuan Yang is a professor of Electri-
cal Engineering and Computer Science with
the University of California, Merced, CA, USA.
He received the Ph.D. degree in computer sci-
ence from the University of Illinois at Urbana-
Champaign, USA, in 2000. He served as an
Associate Editor of the IEEE Transactions on
Pattern Analysis and Machine Intelligence from
2007 to 2011, and is an Associate Editor of the
International Journal of Computer Vision, and
Image and Vision Computing. He received the

NSF CAREER Award in 2012, and Google Faculty Award in 2009. He is
a fellow of the IEEE and the ACM..

1

APPENDIX A
EXPERIMENTAL DETAILS

A.1 Swin-nano Architecture
Due to the absence of Swin models comparable to Deit-
tiny, we configure Swin-nano, which is a 0.25× model of
Swin-tiny such that it has 6M training parameters compa-
rable to Deit-tiny. Table 1 summarizes the configuration of
Swin Transformer models available, including the newly
introduced Swin-nano; S1–S4 indicates the four stages in
Swin Transformer. The performance of all the pre-trained
Swin Transformer models are summarized in Table 2 in the
manuscript.

A.2 Detection Pipelines of All Compared Detectors
All the compared fully transformer-based detectors are com-
posed of either (1) body–neck–head or (2) body–head structure,
as summarized in Table 2. The main difference of ViDT
is the use of reconfigured attention modules (RAM) for
Swin Transformer, allowing the extraction of fine-grained
detection features directly from the input image. Thus,
Swin Transformer is extended to a standalone object detec-
tor called ViDT (w.o. Neck). Further, its extension to ViDT
allows to use multi-scale features and multiple essential
techniques for better detection, such as auxiliary decoding
loss and iterative box refinement, by only maintaining a
transformer decoder at the neck. Except for the two neck-
free detector, YOLOS and ViDT (w.o. Neck), all the pipelines
maintain multiple FFNs; that is, a single FFNs for each de-
coding layer at the neck for box regression and classification.

We believe that our proposed RAM can be combined
with even other latest efficient vision transformer architec-
tures, such as PiT [19], PVT [35] and Cross-ViT [36]. We
leave this as future work.

A.3 Hyperparameters of Neck Transformers
The transformer decoder at the neck in ViDT introduces
multiple hyperparameters. We follow exactly the same set-
ting used in Deformable DETR. Specifically, we use six
layers of deformable transformers with width 256; thus,
the channel dimension of the [PATCH] and [DET] tokens
extracted from Swin Transformer are reduced to 256 to
be utilized as compact inputs to the decoder transformer.
For each transformer layer, multi-head attention with eight
heads is applied, followed by the point-wise FFNs of 1024
hidden units. Furthermore, an additive dropout of 0.1 is
applied before the layer normalization. All the weights in
the decoder are initialized with Xavier initialization. For
(Deformable) DETR, the tranformer decoder receives a fixed
number of learnable detection tokens. We set the number of
detection tokens to 100, which is the same number used for
YOLOS and ViDT.

A.4 Implementation
A.4.1 Detection Head for Prediction
The last [DET] tokens produced by the body or neck are fed
to a 3-layer FFNs for bounding box regression and linear
projection for classification,

B̂ = FFN3-layer
(
[DET]

)
and P̂ = Linear

(
[DET]

)
. (1)

TABLE 1. Swin Transformer Architecture, where S1, S2, S3, and
S4 stand for the number of stages.

Model Channel Stage Numbers
Name Dim. S1 S2 S3 S4
Swin-nano 48 2 2 6 2
Swin-tiny 96 2 2 6 2
Swin-small 128 2 2 18 2
Swin-base 192 2 2 18 2

For box regression, the FFNs produce the bounding box
coordinates for d objects, B̂ ∈ [0, 1]d×4, that encodes the
normalized box center coordinates along with its width
and height. For classification, the linear projection uses a
softmax function to produce the classification probabilities
for all possible classes including the background class,
P̂ ∈ [0, 1]d×(c+1), where c is the number of object classes.
When deformable attention is used on the neck in Table 2,
only c classes are considered without the background class
for classification. This is the original setting used in DETR,
YOLOS [4], [6] and Deformable DETR [21].

A.4.2 Loss Function for Training
All the methods adopts the loss function of (Deformable)
DETR. Since the detection head return a fixed-size set of d
bounding boxes, where d is usually larger than the number
of actual objects in an image, Hungarian matching is used
to find a bipartite matching between the predicted box B̂
and the ground-truth box B. In total, there are three types
of training loss: a classification loss `cl7, a box distance `l1 ,
and a GIoU loss `iou [37],

`cl(i) = −log P̂σ(i),ci , ``1(i) = ||Bi − B̂σ(i)||1, and

`iou(i) = 1−
(|Bi ∩ B̂σ(i)|
|Bi ∪ B̂σ(i)|

−
|B(Bi, B̂σ(i))\Bi ∪ B̂σ(i)|

|B(Bi, B̂σ(i))|
)
,

(2)
where ci and σ(i) are the target class label and bipartite
assignment of the i-th ground-truth box, and B returns the
largest box containing two given boxes. Thus, the final loss
of object detection is a linear combination of the three types
of training loss,

`det = λcl`cl + λ`1`l1 + λiou`iou. (3)

The coefficient for each training loss is set to be λcl = 1,
λ`1 = 5, and λiou = 2. If we leverage auxiliary decoding
loss, the final loss is computed for every detection head
separately and merged with equal importance. Furthermore,
if ViDT is extended to a multi-task learning framework
named ViDT+, the model is trained via the joint-learning
loss composed of detection and segmentation losses, intro-
ducing three additional coefficients λseg, λaware, and λtoken,

`joint = `det + λseg`lseg
+λaware`aware + λtoken`token,

(4)

where `seg is the l1 loss between predicted and ground-
truth segmentation vectors, `aware and `token are the IoU-
aware and token labeling losses in Eqs. (4) and (5). Their
coefficients are set to be λseg = 3.0, λaware = 2.0, and
λtoken = 2.0, respectively.

7. Cross-entropy loss is used with standard transformer architectures,
while focal loss [30] is used with deformable transformer architecture.

2

TABLE 2. Comparison of detection pipelines for all available fully transformer-based object detectors, where † indicates that
multi-scale deformable attention is used for neck transformers.

Pipeline Body Neck Head
Method Name Feature Extractor Tran. Encoder Tran. Decoder Prediction
DETR (DeiT) DeiT Transformer © © Multiple FFNs
DETR (Swin) Swin Transformer © © Multiple FFNs
Deformable DETR (DeiT) DeiT Transformer ©† ©† Multiple FFNs
Deformable DETR (Swin) Swin Transformer ©† ©† Multiple FFNs

YOLOS DeiT Transformer 5 5 Single FFNs

ViDT (w.o. Neck) Swin Transformer+RAM 5 5 Single FFNs
ViDT Swin Transformer+RAM 5 ©† Multiple FFNs

TABLE 3. Variations of Deformable DETR, YOLOS, and ViDT with respect to their neck structure. They are trained for 50 epochs
with the same configuration used in our main experimental results.

Method Backbone AP AP50 AP75 APS APM APL Param. FPS
Deformable DETR Swin-nano 43.1 61.4 46.3 25.9 45.2 59.4 17M 14.6 (17.2)
− neck encoder 34.0 52.8 35.6 18.0 36.3 48.4 14M 42.9 (81.4)

YOLOS DeiT-tiny 30.4 48.6 31.1 12.4 31.8 48.2 6M 52.5 (61.3)
+ neck decoder 38.1 57.1 40.2 20.1 40.2 56.0 13M 33.6 (52.3)

ViDT Swin-nano 40.4 59.6 43.3 23.2 42.5 55.8 15M 40.8 (76.0)
+ neck encoder 46.1 64.1 49.7 28.5 48.7 61.7 19M 26.4 (40.3)

TABLE 4. Comparison of ViDT combined with varying ViT backbones on COCO2017 val set. FPS is measured with batch size 1
of 800× 1333 resolution on a single Tesla A100 GPU, where the value inside the parentheses is measured with batch size 4 of the
same resolution to maximize GPU utilization.

Backbone Epochs APbox APbox
50 APbox

75 APbox
S APbox

M APbox
L Param. FPS

Swin-nano 50 40.4 59.6 43.3 23.2 42.5 55.8 15M 40.8 (76.0)
Swin-tiny 50 44.8 64.5 48.7 25.9 47.6 62.1 37M 33.5 (51.2)

CoaT-lite-tiny 50 41.0 59.8 44.1 23.7 43.7 56.2 13M 35.0 (72.9)
CoaT-lite-small 50 44.0 63.0 47.1 26.7 46.6 60.6 28M 24.8 (46.4)

PVT-v2-b0 50 39.7 58.3 42.4 22.4 42.0 56.0 11M 39.7 (75.0)
PVT-v2-b2 50 47.7 67.2 51.6 28.5 50.8 64.8 35M 22.4 (35.1)

A.5 Training Configuration
We train ViDT for 50 epochs using AdamW [31] with the
same initial learning rate of 10−4 for its body, neck and head.
The learning rate is decayed by cosine annealing with batch
size of 16, weight decay of 1 × 10−4, and gradient clipping
of 0.1. In contrast, ViDT (w.o. Neck) is trained for 150 epochs
using AdamW with the initial learning rate of 5 × 10−5 by
cosine annealing. The remaining configuration is the same
as for ViDT.

Regarding DETR (ViT), we follow the setting of De-
formable DETR. Thus, all the variants of this pipeline are
trained for 50 epochs with the initial learning rate of 10−5

for its pre-trained body (ViT backbone) and 10−4 for its neck
and head. Their learning rates are decayed at the 40-th epoch
by a factor of 0.1. Meanwhile, the results of YOLOS are
borrowed from the original paper [6] except YOLOS (DeiT-
tiny); since the result of YOLOS (DeiT-tiny) for 800 × 1333
is not reported in the paper, we train it by following the
training configuration suggested by authors.

APPENDIX B
SUPPLEMENTARY EVALUATION

B.1 ViDT Combined with Other ViT Backbones
The proposed RAM allows for any ViT variants to be a
standalone object detector by applying their attention mech-
anisms to [PATCH] × [PATCH] attention. That is, the Swin’s

attention is simply replaced with the other one. The rest
[DET] × [DET] and [DET] × [PATCH] attention operations are
exactly the same regardless of ViT types. By doing this,
we combine ViDT with two other state-of-the-art ViT ar-
chitectures for object detection, namely CoaT [10], and PVT-
v2 [11]. Table 4 summarizes their performance compared
with ViDT (Swin) on COCO2017 benchmark data. For a fair
comparison, we use the backbones whose model size is in
the range of ‘nano’ – ‘small’.

For the models with 10M–15M parameters, all the back-
bones show similar APbox of 39.7–41.0, but Swin-nano and
PVT-v2-b0 are more efficient than CoaT-lite-tiny in terms
of FPS. On the other hand, for the models with 28M–35M
parameters, Swin-tiny provides the best trade-off between
AP and FPS. Although PVT-v2-b2 achieves the highest
APbox of 47.7, its FPS is 11.1 lower than Swin-tiny. Coat-
lite-small shows FPS similar to PVT-v2-b2 but its AP is very
poor compared with other counterparts. Overall, Swin is
the most efficient in terms of FPS, while PVT-v2 is the most
effective in terms of the number of parameters.

B.2 Variations of Existing Pipelines

We study more variations of existing detection methods
by modifying their original pipelines in Table 2. Thus, we
remove the neck encoder of Deformable DETR to increase its
efficiency, while adding a neck decoder to YOLOS to lever-

3

age multi-scale features along with auxiliary decoding loss
and iterative box refinement. Note that these modified ver-
sions follow exactly the same detection pipeline with ViDT,
maintaining a encoder-free neck between their body and
head. Table 3 summarizes the performance of all the vari-
ations in terms of AP, FPS, and the number of parameters.
Deformable DETR shows significant improvement in
FPS (+14.4) but its AP drops sharply (−9.1) when its neck
encoder is removed. Thus, it is difficult to obtain fine-
grained object detection representation directly from the
raw ViT backbone without using an additional neck en-
coder. However, ViDT compensates for the effect of the neck
encoder by adding [DET] tokens into the body (backbone),
thus successfully removing the computational bottleneck
without compromising AP; it maintains 6.4 higher AP
compared with the neck encoder-free Deformable DETR
(the second row) while achieving similar FPS. This can
be attributed to that RAM has a great contribution to the
performance w.r.t AP and FPS, especially for the trade-off
between them.
YOLOS shows a significant gain in AP (+7.7) while losing
FPS (−11.0) when the neck decoder is added. Unlike De-
formable DETR, its AP significantly increases even without
the neck encoder due to the use of a standalone object
detector as its backbone (i.e., the modified DeiT in Figure
2(b)). However, its AP is lower than ViDT by 2.3AP. Even
worse, it is not scalable for large models because of its
quadratic computational cost for attention. Therefore, in the
aspects of accuracy and speed, ViDT maintains its domi-
nance compared with the two carefully tuned baselines.

For a complete analysis, we additionally add a neck
encoder to ViDT. The inference speed of ViDT degrades
drastically by 13.7 because of the self-attention for multi-
scale features at the neck encoder. However, it is interesting
to see the improvement of AP by 5.7 while adding only 3M
parameters; it is 3.0 higher even than Deformable DETR.
This indicates that lowering the computational complexity
of the encoder and thus increasing its utilization could
be another possible direction for a fully transformer-based
object detector.

B.3 [DET]× [PATCH] Attention in RAM
In Section 5.2.1, it turns out that the cross-attention in RAM
is only necessary at the last stage of Swin Transformer; all
the different selective strategies show similar AP as long
as cross-attention is activated at the last stage. Hence, we
analyze the attention map obtained by the cross-attention in
RAM. Figure 1 shows attention maps for the stages of Swin
Transformer where cross-attention is utilized; it contrasts
(a) ViDT with cross-attention at all stages and (b) ViDT with
cross-attention at the last stage. Regardless of the use of
cross-attention at the lower stage, it is noteworthy that the
finally obtained attention map at the last stage is almost
the same. In particular, the attention map at Stage 1–3 does
not properly focus the features on the target object, which
is framed by the bounding box. In addition, the attention
weights (color intensity) at Stage 1–3 are much lower than
those at Stage 4. Since features are extracted from a low level
to a high level in a bottom-up manner as they go through
the stages, it seems difficult to directly get information about

TABLE 5. AP and FPS comparison with different [DET] × [DET]
self-attention strategies with ViDT.

Stage Id Swin-nano
1 2 3 4 AP FPS

(1) X X X X 40.4 40.8 (76.0)
(2) X X X 40.3 41.0 (76.4)
(3) X X 40.4 41.1 (77.0)
(4) X 40.1 41.5 (78.1)
(5) 39.7 41.7 (78.5)

the target object with such low-level features at the lower
level of stages. Therefore, this analysis provides strong
empirical evidence for the use of selective [DET] × [PATH]
cross-attention.

B.4 [DET]× [DET] Attention in RAM

Another possible consideration for ViDT is the use of
[DET]× [DET] self-attention in RAM. We conduct an ablation
study by removing the [DET] × [DET] attention one by one
from the bottom stage, and summarize the results in Table
5. When all the [DET]× [DET] self-attention are removed, (5)
the AP drops by 0.7, which is a meaningful performance
degradation. On the other hand, as long as the self-attention
is activated at the last two stages, (1) – (3) all the strategies
exhibit similar AP. Therefore, only keeping [DET] × [DET]
self-attention at the last two stages can further increase FPS
(+0.3) without degradation in AP. This observation could
be used as another design choice for the AP and FPS trade-
off. Therefore, we believe that [DET]× [DET] self-attention is
meaningful to use in RAM.

APPENDIX C
PRELIMINARIES: TRANSFORMERS

A transformer is a deep model that entirely relies on the
self-attention mechanism for machine translation [3]. In
this section, we briefly revisit the standard form of the
transformer.

Single-head Attention. The basic building block of the
transformer is a self-attention module, which generates a
weighted sum of the values (contents), where the weight
assigned to each value is the attention score computed by
the scaled dot-product between its query and key. Let WQ,
WK , and WV be the learned projection matrices of the
attention module, and then the output is generated by

Attn(Z) = softmax
((ZWQ)(ZWK)>√

d

)
(ZWV) ∈ Rhw×d,

where WQ,WK ,WV ∈ Rd×d.
(5)

Multi-head Attention. It is beneficial to maintain multiple
heads such that they repeat the linear projection process k
times with different learned projection matrices. Let WQi

,
WKi

, and WVi
be the learned projection matrices of the

i-th attention head. Then, the output is generated by the
concatenation of the results from all heads,

Multi-Head(Z) =

[Attn1(Z),Attn2(Z), . . . ,Attnk(Z)] ∈ Rhw×d,
where ∀i WQi ,WKi ,WVi ∈ Rd×(d/k).

(6)

4

Query Id: 82 (Cat) Query Id: 94 (Cat) Query Id: 7 (Remote) Query Id: 53 (Remote)Input Image

(a) Cross-attention at all stages {1, 2, 3, 4}.

Query Id: 44 (Cat) Query Id: 49 (Cat) Query Id: 25 (Remote) Query Id: 3 (Remote)Input Image

(b) Cross-attention at the last stage {4}.
Fig. 1. Visualization of the attention map for cross-attention with ViDT (Swin-nano).

Typically, the dimension of each head is divided by the total
number of heads.
Feed-Forward Networks (FFNs). The output of the multi-
head attention is fed to the point-wise FFNs, which
performs the linear transformation for each position
separately and identically to allow the model focusing on
the contents of different representation subspaces. Here, the
residual connection and layer normalization are applied
before and after the FFNs. The final output is generated by

H = LayerNorm(Dropout(H ′) +H ′′),

where H ′ = FFN(H ′′) and
H ′′ = LayerNorm(Dropout(Multi-Head(Z)) + Z).

(7)

Multi-Layer Transformers. The output of a previous layer
is fed directly to the input of the next layer. Regarding the
positional encoding, the same value is added to the input of
each attention module for all layers.

