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ABSTRACT

We introduce a trainable front-end module for audio repre-
sentation learning that exploits the inherent harmonic struc-
ture of audio signals. The proposed architecture, composed
of a set of filters, compels the subsequent network to cap-
ture harmonic relations while preserving spectro-temporal lo-
cality. Since the harmonic structure is known to have a key
role in human auditory perception, one can expect these har-
monic filters to yield more efficient audio representations. Ex-
perimental results show that a simple convolutional neural
network back-end with the proposed front-end outperforms
state-of-the-art baseline methods in automatic music tagging,
keyword spotting, and sound event tagging tasks.

Index Terms— Harmonic filters, audio representation
learning, deep learning

1. INTRODUCTION

With the emergence of deep learning, end-to-end data-driven
approaches have become prevalent in audio representation
learning [1]. Domain knowledge is often de-emphasized in
modern deep architectures and is minimally used in prepro-
cessing steps (e.g., Mel spectrograms). Recent works, with
no domain knowledge in their architecture design and pre-
processing, reported remarkable results in automatic music
tagging [2], voice search [3], and environmental sound de-
tection [4], by using raw audio waveforms directly as their
inputs.

Nevertheless, we believe that domain knowledge may
facilitate more efficient representation learning, especially
when the amount of data is limited [5]. Given that harmonic
structure plays a key role in human auditory perception [6],
we present a model with a front-end module that can learn
compelling representations in a data-driven fashion while
forcing the network to employ such harmonic structures.
This front-end module, which we call Harmonic filters, is a
trainable filter bank [7, 8, 9, 10, 11] that preserves spectro-
temporal locality with harmonic structures [12]. Thus, these
Harmonic filters aim to bridge the modern assumption-free
approaches with the traditional hand-crafted techniques, with
the goal to reach a “best of both worlds” scenario.

Contribution. Our contribution is three-fold: (i) we propose
a versatile front-end module for audio representation learning
with a set of data-driven harmonic filters, (ii) we show that
the proposed method achieves state-of-the-art performance in
three different audio tasks, and (iii) we present analyses on
the parameters of our model that depict the importance of har-
monics in audio representation learning.
Organization. The paper is organized as follows: We in-
troduce the Harmonic filters and their architecture design in
Section 2. Section 3 describes the tasks and datasets used to
assess the Harmonic filters. Section 4 reports experimental re-
sults and analyses. Finally, we draw conclusions and discuss
future work in Section5.

2. ARCHITECTURE

2.1. Previous Harmonic Representations

The harmonic constant-Q transform (HCQT) [12] is a 3-
dimensional representation whose dimensions are harmonic
(H), frequency (F), and time (T). By stacking standard
constant-Q transform (CQT) representations, one harmonic
at a time, the output representation (i.e., HCQT) can preserve
the harmonic structure while having spectro-temporal local-
ity. A fully convolutional neural network (CNN) with HCQT
inputs could achieve state-of-the-art performance in multi-f0
and melody extraction tasks using several datasets [12].

In our previous work [13], we used two learnable sinc
functions (i.e., sin(x)/x) to form each band-pass filter of the
first convolutional layer [11], such that the set of harmonics
can be learned. By aligning the convolution band-pass fil-
ters in each harmonic, the first layer outputs an H × F × T
tensor. When the first harmonic center frequencies are initial-
ized with a MIDI scale, this can be interpreted as an extended,
more flexible version of HCQT.

However, the convolution band-pass filter approach to
get harmonic spectro-temporal representations requires many
convolutions (H × F ), including redundant ones (e.g., a
440Hz filter is equivalent to the second harmonic filter of
220Hz). To overcome these efficiency limitations, in this
work we replace the convolution band-pass filters of our
previous work with an STFT module followed by learnable
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Fig. 1: (a) The proposed architecture using Harmonic filters. The proposed front-end outputs the Harmonic tensor and the
back-end processes it depending on the task. The Harmonic filters and the 2-D CNN are data-driven modules that learn
parameters during training. (b) Harmonic filters at each harmonic. (c) An unfolded Harmonic tensor. The red arrow indicates
the fundamental frequency.

triangular filters, the so-called Harmonic filters.

2.2. Harmonic Filters

First, we formulate a triangular band-pass filter Λ as a func-
tion of a center frequency fc and a bandwidthBW as follows:

Λ(f ; fc, BW ) =

[
1− 2|f − fc|

BW

]
+

, (1)

where [·]+ is a rectified linear function, and f is the frequency
bin. Note that when there are multiple triangular band-pass
filters with Mel scaled center frequencies, the filter bank per-
forms similarly to the Mel filter bank.1

Empirically, the bandwidth BW can be approximated as
an affine transform of fc: BW ' 0.1079fc+24.7 (equivalent
rectangular bandwidth (ERB) [14]). For flexibility’s sake, we
let the data decide the affine transform with parameters α, β,
and Q: BW = (αfc + β)/Q.

Now, we define a Harmonic filter Λn as follows:

Λn(f ; fc, α, β,Q) =

[
1− 2|f − n · fc|

(n · αfc + β)/Q

]
+

. (2)

The Harmonic filter Λn is a triangular band-pass filter of the
n-th harmonic of center frequency fc. Then, our proposed
filter bank is defined as a set of Harmonic filters as follows:

{Λn(f ; fc) | n = 1, . . . ,H, fc ∈ {f (1)c , . . . , f (F )
c }}, (3)

where f (i)c denotes the i-th center frequency in the first har-
monic. Figure 1-(b) shows Harmonic filters with H = 4 and
F = 3. Bandwidths go wider as center frequencies go higher.

1It is not equivalent because Mel filters have asymmetrical triangle
shapes.

Note that, for a given input spectrogram, when H = 1
and fc are initialized with a Mel scale, the filter bank will
return an output analogous to the Mel spectrogram. When
H > 1, we stack the outputs aligned with harmonic so that
we can have a tensor of dimensionality H × F × T as shown
in Figure 1-(a). We call this 3-dimensional tensor a Harmonic
tensor. Exploiting locality in time, frequency, and harmonic
by using this type of representation is advantageous, as dis-
cussed in [12]. Furthermore, this Harmonic tensor is flexible
since the center frequencies fc and the bandwidth parameters
α, β, Q are all learnable in a data-driven fashion.

2.3. Back-end

Deep networks for audio representation learning can be di-
vided into front-end and back-end: a feature extractor and a
classifier, respectively [5]. Figure 1-(a) shows the overview
of the proposed architecture. We use an STFT module fol-
lowed by Harmonic filters as our front-end. For the back-end,
a simple conventional 2-D CNN is used since our main goal
is to emphasize the advantages of using learnable Harmonic
tensors. Harmonics are treated as channels to be fed into the
2-D CNN, thus capturing the harmonic structure through each
of its channels. This design choice enforces the convolutional
filters to embed harmonic information with locality in time
and frequency.

Figure 1-(c) shows an unfolded Harmonic tensor of a
440Hz piano sound. We indicate the fundamental frequency
with a red arrow. From left to right, we can see the intensity
of the first, second, third, and fourth harmonics at once.



2.4. Implementation details

First, harmonic center frequencies fc of the Harmonic tensor
are initialized to have a quarter tone interval: fc(k) = fmin ·
2k/24, where k is the filter index and fmin = 32.7Hz (C1)
is the lowest frequency. The maximum frequency of the first
harmonic fmax is defined as: fmax = fs/2H , where fs is the
sampling rate. After the parameter study, we set the number
of harmonics H to 6 for inputs with a 16kHz sampling rate.
This results in 128 frequency bins (F = 128), with a total of
768 Harmonic filters.

The back-end CNN consists of seven convolutional lay-
ers and one fully connected layer to predict the outputs. Each
layer includes batch normalization [15] and ReLU nonlinear-
ity. The final activation function is a sigmoid or a softmax,
depending on the task. Models are trained for 200 epochs and
we choose the best model based on the evaluation metric in
the validation set. Scheduled ADAM [16] and stochastic gra-
dient descent (SGD) were used for stable convergence as pro-
posed in [17]. More implementation details and reproducible
code are available online.2

3. TASKS AND DATASETS

To show the versatility and effectiveness of the Harmonic fil-
ters, we experiment with three different tasks: automatic mu-
sic tagging, keyword spotting, and sound event tagging.
Automatic music tagging. This is a multi-label classifica-
tion task that aims to predict tags for a given music excerpt.
A subset of the MagnaTagATune (MTAT) dataset [21], which
consists of ≈26k audio clips, is a widely used set for music
tagging. We follow the same data cleaning and split of pre-
vious works [2, 20, 17]. This yields ≈21k audio clips with
top-50 tags. Area Under Receiver Operating Characteristic
Curve (ROC-AUC) and Area Under Precision-Recall Curve
(PR-AUC) are used as evaluation metrics following previous
literature [5, 20, 17]. Many music tags such as genre, in-
strumentation, and moods are highly related to the timbre of
audio, and harmonic characteristics are crucial for the timbre
perception. Hence, one can expect improvements in music
tagging by adopting the Harmonic filters in the front-end.
Keyword spotting. MFCC have long been used as input to
many speech recognition models because harmonic structure
is known to be important for the speech recognition. We
believe the Harmonic filters will bring faster convergence and
performance improvement than conventional 2-dimensional
representations (e.g., CQT, Mel spectrogram). The Speech
Commands dataset [22] consists of ≈106k audio samples
with 35 command classes (e.g., “yes,” “no,” “left,” “right”)
for limited-vocabulary speech recognition. Trained mod-
els are trivially evaluated with the classification accuracy of
choosing one of the 35 classes.

2https://github.com/minzwon/data-driven-harmonic-filters

Sound event tagging. The DCASE 2017 challenge [23]
used a subset of the AudioSet [24] for the task 4: “large-scale
weakly supervised sound event detection for smart cars.” It
consists of ≈53k audio excerpts with 17 sound event classes,
e.g., train horn, car alarm, and ambulance siren. Acoustic
events are non-music and non-verbal audio signals, which
are expected to have more “inharmonic” characteristics. We
are particularly interested in exploring the performance of the
proposed model on such audio signals, and thus this task is
an ideal candidate for our research. This is also a multi-
label classification task and we evaluate it using the average
of instance-level F1-scores.

4. EXPERIMENTAL RESULTS

4.1. Comparison with the state of the art

We compare the Harmonic tensor based 2D CNN with the
state-of-the-art models of each task. All the experimental re-
sults are averaged after three runs. As shown in Table 1, our
model outperforms previous results in every task.

In music tagging, we reproduced Musicnn [5] with the
same data cleaning and split strategy from others [2, 20] for a
fair comparison. As a result, the Mel spectrogram based ap-
proach [5] and the raw audio based approach [20] yield com-
parable results on the MTAT dataset. Our proposed model
shows improvements from previous approaches in terms of
ROC-AUC and PR-AUC.

As we expected, the keyword spotting accuracy of the pro-
posed model is superior to previous works. Moreover, this
showed remarkably fast convergence: the best model accord-
ing to the validation loss was around 10 epochs while other
tasks needed over 100 epochs.

The Harmonic filters were also effective when operating
on relatively inharmonic audio signals. We report two differ-
ent metrics for the DCASE 2017 dataset. F1 (0.1) indicates
the F1-score when the threshold of prediction is 0.1, and F1
(opt) is the post threshold optimization score. Note that our
model is superior to the state-of-the-art without data balanc-
ing or ensembles.

4.2. Parameter study

In this subsection, we provide further understanding of the
Harmonic filters by a parameter study and a qualitative anal-
ysis on the trained models.

We conduct the parameter study using the MTAT dataset
to investigate how the number of harmonics H impacts per-
formance. Table 2 summarizes the results. When H = 1, the
Harmonic tensor is a 2-dimensional representation like a Mel
spectrogram or a CQT, but with frequency bins and bandwidth
parameters that are automatically learned and initialized as
described in Section 2.4. For 3-dimensional Harmonic ten-
sors (H > 1), performance improves as the model uses more



Methods
Music Tagging Keyword Spotting Sound Event Tagging

MTAT Speech Commands DCASE 2017
ROC-AUC PR-AUC Accuracy F1 (0.1) F1 (opt)

Musicnn [5] 0.9089* 0.4503* - - -
Attention RNN [18] - - 0.9390 - -
Surrey-cvssp [19] - - - - 0.5560

Sample-level [2] 0.9054 0.4422 0.9253 0.4213 -
+ SE [20] 0.9083 0.4500 0.9395 0.4582 -
+ Res +SE [20] 0.9075 0.4473 0.9482 0.4607 -

Proposed 0.9141 0.4646 0.9639 0.5468 0.5824

Table 1: Performance comparison with state-of-the-art. The numbers are averaged across 3 runs. ‘*’ denotes reproduced result
with our data split. F1 (0.1) and F1 (opt) denote F1-score measured by threshold value of 0.1 and optimized one, respectively.

H 1 2 3 4 5 6 7∗

ROC-AUC 0.9132 0.9115 0.9118 0.9118 0.9129 0.9141 0.9146
PR-AUC 0.4599 0.4541 0.4550 0.4555 0.4562 0.4646 0.4617

Table 2: The effect of number of Harmonics (H) on MTAT.
’*’ has a different size of max pooling due to the smaller F .

Options 512 FFT 256 FFT Quarter tone Semi tone

Q(MTAT) 2.1386 1.9537 2.1386 1.8447
Q(Speech Commands) 1.9032 1.9983 1.9032 1.8451
Q(DCASE 2017) 1.9040 1.8762 1.9040 1.8460

Table 3: Trained bandwidth parameterQ in different settings.

harmonics. Note that, as we described in Section 2.4, the fre-
quency range in the first harmonic becomes narrower as the
number of harmonics H increases (fmax = fs/2H). We
hypothesize that this is the reason why there is a slight per-
formance drop between H = 1 and H = 2. However, much
larger H might yield worse results. If H = 10 for exam-
ple, the maximum frequency of the first harmonic becomes
800Hz, which means the Harmonic tensor cannot include the
harmonic information of higher pitches, i.e., fundamental fre-
quencies higher than 800Hz.

We also tried to determine the role of learnable center
frequencies fc but we could not find significant differences
between learnable and fixed center frequencies. Their per-
formance gaps in three different tasks are all in the range of
performance variance. In our experimental setup using quar-
ter tone MIDI scale, there is no observable benefit of using
learnable center frequencies fc.

Finally, we show the role of the bandwidth parameter Q.
In this experiment, we used fixed values of α and β with
the empirical values [14] and only let Q to be trained. As
we mentioned in Section 2.2, the Harmonic tensor is more
flexible than HCQT since this parameter does not need to
be heuristically set. In Table 3, the bandwidth parameter Q

changes based on task, FFT size, and center frequency inter-
val. This proves that the optimal parameter Q is task- and
settings-dependent, thus showing the importance of automat-
ically learning it in a data-driven manner.

5. CONCLUSION

In this paper, we introduced data-driven Harmonic filters to
form a versatile front-end for audio representation learning.
Experimental results report state-of-the-art performance in
automatic music tagging, keyword spotting, and sound event
tagging tasks. The output of the proposed front-end keeps
locality in time, frequency, and harmonic so that the subse-
quent back-end can explicitly capture harmonic structures.
The proposed front-end is flexible since it learns bandwidth
parameters in a data-driven fashion. To further scrutinize the
representation ability of the proposed model, other complex
tasks beyond binary classification should be considered. An-
alyzing how well this model scales with larger datasets would
also be key to better understand the potential of the proposed
architecture. Finally, interpretability studies and additional
investigation on the learnable parameters of the model may
yield valuable insights in terms of how to more optimally
apply these Harmonic filters.
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