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(a) Inputs (c) PhotoWCT (d) Ours (WCT2)(b) WCT

Figure 1: Photorealistic stylization results. Given (a) an input pair (top: content, bottom: style), the results of (b) WCT [20],
(c) PhotoWCT [21], and (d) our model are shown. Every result is produced without any post-processing. While WCT and
PhotoWCT suffer from spatial distortions, our model successfully transfers the style and preserves the fine details.

Abstract

Recent style transfer models have provided promising
artistic results. However, given a photograph as a reference
style, existing methods are limited by spatial distortions or
unrealistic artifacts, which should not happen in real pho-
tographs. We introduce a theoretically sound correction to
the network architecture that remarkably enhances photore-
alism and faithfully transfers the style. The key ingredient of
our method is wavelet transforms that naturally fits in deep
networks. We propose a wavelet corrected transfer based
on whitening and coloring transforms (WCT2) that allows
features to preserve their structural information and sta-
tistical properties of VGG feature space during stylization.
This is the first and the only end-to-end model that can
stylize a 1024×1024 resolution image in 4.7 seconds, giv-
ing a pleasing and photorealistic quality without any post-
processing. Last but not least, our model provides a stable
video stylization without temporal constraints. Our code,
generated images, and pre-trained models are all available
at ClovaAI/WCT2.

1. Introduction
Photorealistic style transfer has to satisfy contradictory

objectives. To be photorealistic, a model should apply the
reference style on the scene without hurting the details of an
image. In Figure 1, for example, the general style (color and
tone) of sky and sea should change, while the fine structures
of the ship and the bridge remain intact. However, artistic
style transfer methods (e.g., whitening and coloring trans-
forms, WCT [20]) generally suffer from severe distortions
due to their strong abstraction ability, which is not favored
in the photorealistic stylization (Figure 1b). (Please refer to
our supplementary materials for more failure cases.)

Luan et al. [24] introduced a regularizer for photorealism
on the traditional optimization-based method [9]. However,
solving the optimization problem requires heavy computa-
tional costs, which limits their use in practice. To overcome
this issue, Li et al. [21] recently proposed a photorealis-
tic variant of WCT (PhotoWCT) that replaced the upsam-
pling components of the VGG decoder with unpooling. By
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Figure 2: Comparison between previous style transfer models and our proposed model architecture (WCT2). Unlike WCT
[20] and PhotoWCT [21] that use max-pooling and recursively stylize from coarse (level 5) to fine (level 1), WCT2 replaces
lossy operations (green) with wavelet pooling (blue) and unpooling (red), and employs the progressive stylization strategy
in a single pass. Note that given the content (c) and style (s), WCT2 outputs the final image (Ifinal) while the PhotoWCT
output (Ilevel1) needs further post-processing steps (smoothing and filtering).

providing a max-pooling mask, PhotoWCT is designed to
compensate for information loss during the encoding step
and suppress the spatial distortion. Although their approach
was valid, the introduction of the mask was not able to re-
solve the information loss that comes from the max-pooling
of VGG network (Figure 1c). To fix the remaining artifacts,
they had to perform a series of post-processing steps, which
require the original image to patch up the result. Not only
do these post-processing steps retuire cumbersome compu-
tation and time but they entail another unfavorable blurry
artifact and hyper-parameters to manually set.

Instead of providing partial amendments, we address the
fundamental problem by introducing a theoretically sound
correction on the downsampling and upsampling opera-
tions. We propose a wavelet corrected transfer based on
whitening and coloring transforms (WCT2) that substitutes
the pooling and unpooling operations in the VGG encoder
and decoder with wavelet pooling and unpooling. Our mo-
tivation is that the learned function by the network should
have its inverse operation to enable exact signal recov-
ery, and accordingly, photorealistic stylization. (We pro-
vide theoretical details in our supplementary materials.) It
allows WCT2 to fully reconstruct the signal without any
post-processing steps, thanks to the favorable properties of
wavelets providing minimal information loss [34, 35]. The
decomposed wavelet features provide interesting interpreta-
tions on the feature space as well, such as component-wise
stylization and why average pooling is known to give better
stylization than max-pooling (Section 4.1).

In addition, we propose progressive stylization instead of
following the multi-level strategy that is used in WCT [20]
and PhotoWCT [21] (Figure 2). To maximize the styliza-
tion effect, WCT and PhotoWCT recursively transformed
features in a multi-level manner from coarse to fine. In con-

trast, we progressively transform features during a single
pass. This allows two significant advantages over the oth-
ers. First, our model is simple and efficient since we only
have a single decoder during training as well as in the in-
ference time. On the other hand, the multi-level strategy
requires to train a decoder for each level without sharing
parameters, which is inefficient in terms of the number of
parameters and training procedure. This overhead remains
in the inference time as well because the model requires to
pass multiple encoder and decoder pairs to stylize an image.
Second, by recursively encoding and decoding the signal
with the lossy VGG networks, artifacts are amplified during
the multi-level stylization. Because of wavelet operations
and progressive stylization, our model does not have such a
problem, and even more, it shows little error amplification
when the multi-level strategy is employed (Figure 6).

Our contributions are summarized as follows. We first
show that the spatial distortions come from the network
operations that cannot satisfy the reconstruction condition
(Section 3). By employing the wavelet corrected transfer
and progressive stylization, we propose the first end-to-
end photorealistic style transfer model that allows to re-
move the additional post-processing steps. Our model can
process a high resolution image (1024×1024) in 4.7 sec-
onds, which is 830 times faster than the state-of-the-art
models, where PhotoWCT fails due to an out-of-memory
issue and Deep Photo Style Transfer (DPST) [24] takes
3887.8 seconds. Our experimental results show quantita-
tively better visual quality in both SSIM and Gram loss
(Figure 9), and qualitatively being preferred by 62.21% in
the user study (Table 2). In addition, our model has three
times fewer parameters than PhotoWCT and provides tem-
porally stable stylization enabling video applications with-
out additional constraints, such as optical flow (Figure 8).



2. Related Work
Style transfer. Starting from the seminal work of Gatys
et al. [9], many artistic style transfer studies have been
proposed to synthesize stylized images through either it-
erative optimization [10], finding dense correspondence
[22, 30, 11] or manipulating features in pre-trained net-
works [14, 20]. However, due to their powerful ability to
abstract the features, they cannot be used in the photoreal-
istic style transfer as they are.

Compared to artistic style transfer, photorealistic trans-
fer has been overlooked. Classical methods mostly match
the color and tone [1, 26, 27] of the images, which are re-
stricted to specific usage. Luan et al. [24] proposed deep
photo style transfer (DPST), which augments the neural
style algorithm [9] with an additional photorealism regular-
ization term and a semantic segmentation mask. However,
DPST requires heavy computation to solve the regularized
optimization problem.

Recently, Li et al. [21] proposed a photorealistic vari-
ant of WCT (PhotoWCT), which replaces the upsampling
of the VGG decoder with unpooling. PhotoWCT showed
that the spatial distortion could be relaxed by providing
max-pooling masks to the decoder. Because the visual qual-
ity of the raw outputs of PhotoWCT was not satisfactory,
the authors had to employ additional post-processing, such
as smoothing and filtering. However, not only do these in-
crease runtime exponentially to the image resolution, but
blur final outputs.

Different from the existing methods, our method can pre-
serve the fine structures of an image with little spatial dis-
tortion in an end-to-end manner, and thus removes the ne-
cessity of additional post-processing steps.

Signal reconstruction using wavelets. Signal recon-
struction using wavelets has been an extensive research
topic in applied mathematics community due to its favor-
able characteristics such as proven convergence and com-
pact representation of an arbitrary signal [6, 19]. There have
been several attempts to incorporate both classical signal
processing and deep learning approaches, including fea-
ture reduction [18], network compression [12, 18], super-
resolution [2], classification [3, 8, 25, 29, 32] and image
denoising [15]. Similarly, our approach augments wavelets
as a component of the network architecture and provides an
interpretable module that can enhance the photorealism of
a style transfer model.

One closest related work [32] recently proposed to use
wavelets as an alternative to traditional neighborhood pool-
ing. However, their goal is to reduce feature dimensions by
discarding the first-level sub-bands, while we exploits all
sub-bands. In addition, we utilize both wavelet decomposi-
tion and reconstruction together to exactly recover the spa-
tial information with minimal noise amplification.

3. WCT2

To achieve photorealism, a model should recover the
structural information of a given content image while it
stylizes the image faithfully at the same time. To address
this issue, we propose a Wavelet Corrected Transfer based
on Whitening and Coloring Transforms, dubbed WCT2.
More specifically, we handle the first objective by employ-
ing wavelet pooling and unpooling, which preserve infor-
mation of the content to the transfer network. We use pro-
gressive stylization within a single forward pass to tackle
the second issue.

3.1. Wavelet corrected transfer

Haar wavelet pooling and unpooling. We first explain
the main components of our model using Haar wavelets,
which we call wavelet pooling and unpooling. Haar wavelet
pooling has four kernels, {LL> LH> HL> HH>}, where
the low (L) and high (H) pass filters are

L> =
1√
2

[
1 1

]
, H> =

1√
2

[
−1 1

]
. (1)

Thus, unlike common pooling operations, the output of the
Haar wavelet pooling has four channels. Here, the low-pass
filter captures smooth surface and texture while the high-
pass filters extract vertical, horizontal, and diagonal edge-
like information. For simplicity, we denote the output of
each kernel as LL, LH, HL, and HH, respectively.

One important property of our wavelet pooling is that
the original signal can be exactly reconstructed by mirror-
ing its operation; i.e., wavelet unpooling. In detail, wavelet
unpooling fully recovers the original signal by perform-
ing a component-wise transposed-convolution, followed by
a summation. (Please see our supplementary materials for
more details.) Thanks to this favorable property, our pro-
posed model can stylize an image with minimal informa-
tion loss and noise amplification. On the other hand, max-
pooling does not have its exact inverse so that the encoder-
decoder structured networks used in the WCT [20] and Pho-
toWCT [21] cannot fully restore the signal.

Note that Haar wavelet pooling and unpooling is not the
only operation which can fully recover the original signal.
However, we choose Haar wavelet because it splits the orig-
inal signal into channels that capture different components,
which leads to better stylization.

Model architecture. To fully utilize the encoded infor-
mation, we replace every max-pooling and unpooling of
PhotoWCT with the wavelet pooling and unpooling (Fig-
ure 2). Specifically, we use the ImageNet [5] pre-trained
VGG-19 network [31] from conv1 1 layer to conv4 1
layer as the encoder. The max-pooling layers are replaced
with wavelet pooling where the high frequency components



(LH, HL, HH) are skipped to the decoder directly. Thus,
only the low frequency component (LL) is passed to the
next encoding layer. The decoder has a mirror structure of
the encoder, and the wavelet unpooling aggregates the com-
ponents. (Please refer to our supplementary materials for
more details about the proposed network architecture)

3.2. Stylization

Whitening and coloring transforms (WCT). Since our
method is built upon WCT [20]1, we first recap WCT
briefly. WCT can perform style transfer with arbitrary styles
by directly matching the correlation between content and
style in the VGG feature domain. It projects the content
features to the eigenspace of style features by calculating
singular value decomposition (SVD). The final stylized im-
age is obtained by feeding the transferred features into the
decoder. To provide better artistic style transfer, the authors
employed a multi-level stylization framework by applying
WCT to multiple encoder-decoder pairs (Figure 2b).

Progressive stylization. Instead of using the multi-level
stylization used in WCT and PhotoWCT, we progressively
transform features within a single forward-pass as illus-
trated in Figure 2. We sequentially apply WCT at each scale
(conv1 X, conv2_X, conv3 X and conv4 X) within a
single encoder-decoder network. Note that the number of
SVD computations of our model remains the same. We can
add more WCTs on skip-connections and decoding layers to
further strengthen the stylizing effect at the cost of time con-
sumption. This will be covered in more detail in Section 4.4.
There are several advantages of our proposed progressive
stylization against the multi-level one. First, the multi-level
strategy requires to train a decoder for each level without
sharing parameters, which is inefficient. On the other hand,
our training procedure is simple because we only have a
single pair of encoder and decoder, which is advantageous
in the inference time as well. Second, recursively encod-
ing and decoding the signal with VGG network architecture
amplifies errors causing unrealistic artifacts in the output.
In the later section, we show that our proposed progressive
stylization technique suffers less from the error amplifica-
tion than the multi-level strategy.

4. Analysis
4.1. Wavelet pooling

We first examine the effects of using the wavelet pool-
ing instead of max-pooling. As shown in Figure 3b and

1Note that our wavelet corrected transfer is not limited to a specific
stylization method. Here, we simply used WCT for better stylization. For
example, at the expanse of slight image quality degradation, our model
can be integrated with AdaIN [14], which further accelerates the model by
avoiding SVD calculation. (Please refer to the supplemntary materials.)

(a) Input (b) PhotoWCT [21]

(c) Ours (d) Ours (LL only)

Figure 3: Comparison between max-pooling and wavelet
pooling. Given (a) an input pair (inset: style), we compare
the results of (b) PhotoWCT without post-processing, (c)
ours and (d) ours but stylize only the LL component. Note
that the edges are left unstylized (inside the red box).

3c, PhotoWCT suffers from the loss of spatial information
by max-pooling while ours preserves fine details. We re-
call that the low frequency component captures smooth sur-
face and texture while the high frequency components de-
tect edges. This enables our model to separately control the
stylization effect by choosing a component. More specifi-
cally, it implies that applying WCT to LL of the encoder
affects overall texture or surface while applying WCT to
the high frequency components (i.e., LH, HL, HH) stylize
edges. Indeed, when we stylize all components (Figure 3c),
our model transfers the given style to the entire building. In
contrast, if we do not perform WCT on the high frequency
components, the boundaries of windows remain unchanged
(Figure 3d).

Note that using only the LL component of our wavelet
pooling is equivalent to using the average pooling. Interest-
ingly, since Gatys et al. [9], many studies have consistently
reported that replacing the max-pooling operation with av-
erage pooling yields slightly more appealing results. This
can be explained in our framework that the model is us-
ing only the partial information (LL) of the wavelet decom-
posed feature domain. In addition, because each frequency
component of the content feature is transformed into its cor-
responding component of style feature, we can obtain a sim-
ilar advantage as we do by using spatial correspondences.

4.2. Ablation study

To show that our model indeed benefits from the wavelet
pooling, we compare the stylization results using other
pooling variants. We unpool the features similar to the
way we do for the wavelet unpooling; i.e., transposed-
convolution and summation.



(a) Input (b) Split

(c) Learnable (d) Ours (WCT2)

Figure 4: Ablation study on pooling methods. While split
and learnable poolings suffer from the lack of representation
power or altered feature statistics, wavelet pooling benefits
from the compact representation of wavelets and retains the
original VGG feature property intact.

Split pooling. Split pooling has 2 × 2 filters with fixed
weights, i.e., [1 0 0 0], [0 1 0 0], [0 0 1 0], and [0 0 0 1]. Split
pooling has a similar property to wavelet pooling in that
it can carry whole information. Here, we can see a similar
effect but degradation in fine details, e.g., the grass (Figure
4b). We suspect that this is due to the lack of representation
power.

Learnable pooling. Learnable pooling is a trainable
conv layer with a stride of two. As shown in Figure 4c,
it does not preserve the content nor faithfully transfer the
style. We suppose that this happens because the learnable
pooling brings too much flexibility to the network. This ru-
ins the original feature properties of VGG networks [31],
which is known to be good at extracting styles [9].

4.3. Unpooling options

To achieve better reconstruction, we adopted concate-
nation instead of summation for unpooling, similar to U-
Net structure [13, 28, 36]. This enables the network to
learn the weighted sum of components at the expense of
interpretability and theoretical correctness. Specifically, our
wavelet unpooling now performs channel-wise concatena-
tion of four feature components from the corresponding
scale plus feature output before the wavelet pooling. There-
fore, the number of parameters increases at the conv layer
that comes right after the wavelet unpooling. This increases
the total number of parameters to be 1.80× of the sum-
version of WCT2 while PhotoWCT has 3.06× parameters.
As shown in Figure 5, spatial details are further improved.
The sum-version generally produces a more stylized output

(a) Content (b) Style

(c) Sum-version (d) Concatenated-version

Figure 5: Variation of the unpooling options (Section 4.3).

(a) Input (b) Style

(c) Single-pass (WCT2) (d) Multi-level

Figure 6: Stylization strength with more whitening and col-
oring transforms. Single-pass is our baseline (Section 4.4).

while the concatenated-version produces a clearer image.
(Please see our supplementary materials for more results.)

4.4. Progressive vs. multi-level strategy

Owing to the exact reconstruction property of wavelet
pooling, our model can adopt the multi-level strategy to
increase the contrast in the transferred style with mini-
mal noise amplification. As shown in Figure 6d, adopt-
ing the multi-level approach in addition to WCT2 leads
to more vivid results. Note that it maintains photorealism
while PhotoWCT produces spotty artifacts due to the noise
amplification (Figure 7c). In addition, performing progres-
sive stylization at the decoder as well, namely conv3 2,
conv2 2, and conv1 2, further increases stylization ef-
fect. Still, strengthening the style comes at the cost of pho-
torealism and multiple SVD computations. (Please refer to
the supplementary materials for more results)



(a) Input (b) DPST [24] (c) PhotoWCT [21] (d) PhotoWCT (full) [21] (e) Ours (WCT2)

Figure 7: Photorealistic stylization results. Given (a) an input pair (top: content, bottom: style), the results of (b) deep photo
style transfer (DPST) [24], (c) and (d) PhotoWCT [21], and (e) ours (WCT2) are shown. PhotoWCT (full) denotes the results
after applying two post-processing steps proposed by the authors [21]. Note that WCT2 does not need any post-processing.



Ours (WCT2)

PhotoWCT

Style Content

Figure 8: Photorealistic video stylization results (from day-to-sunset). Given a style image and video frames (top), we
show the results by (middle) WCT2 and (bottom) PhotoWCT [21] without providing semantic segmentation maps and post-
processing steps.

5. Experimental results

In this section, we show that our simple modification can
remarkably enhance the performance of photorealistic style
transfer. Here, every result is reported based on the con-
catenated version of our model. For a fair comparison and
time-efficiency, we only perform whitening and coloring on
LL components (e.g., convX 1 outputs of the encoder) pro-
gressively. Thus, the number of whitening and coloring pro-
cedure of our model matches with PhotoWCT.

5.1. Implementation details

We use the encoder-decoder architecture with fixed VGG
encoder weights. The decoder is trained on Microsoft
COCO dataset [23], minimizing the L2 reconstruction loss
and the additional feature Gram matching loss with the en-
coder. The training is done with NAVER Smart Machine
Learning (NSML) platform [16]. We use ADAM optimizer
[17] with a learning rate of 10−3. Finally, similar to Pho-
toWCT and DPST, we utilize the semantic map to match
the styles of corresponding image regions. The code and
pre-trained models are available at ClovaAI/WCT2.

5.2. Qualitative evaluation

Figure 7 shows the results of DPST, PhotoWCT and
ours (WCT2). DPST often generates “staircasing” or “car-
toon” artifacts [4] with an unrealistic color transfer, which
severely hurts photorealism (Figure 7b). PhotoWCT bet-
ter reconstructs the details of the content image, while it
shows spotty artifacts over entire images (Figure 7c). Such
artifacts can be removed by employing additional post-
processing steps (Figure 7d). However, it has three disad-
vantages that 1) optimization is slow, 2) hyper-parameters
should be carefully tuned to trade-off between smoothness
and fine details, and 3) the final image becomes blurry at
the expense of removed artifacts. In contrast, our proposed
method shows fewer artifacts while faithfully transferring
the reference styles (Figure 7e). Note that we do not apply
any post-processing after the network output.

Video stylization. To emphasize consistent feature rep-
resentation of the wavelet pooling and unpooling, we sep-
arately stylize every video frame to target style without
any semantic segmentation. Figure 8 shows that WCT2

performs stable video style transfer without any tempo-
ral consistency regularization such as optical flow. On the
other hand, PhotoWCT generates spotty and varying arti-
facts over frames, which harms the photorealism. (The link
to the full video can be found in our project page.)

5.3. Quantitative evaluation

Statistics. To measure photorealism, we employ two sur-
rogate metrics for spatial recovery and stylization. We cal-
culate the structural similarity (SSIM) index between edge
responses [33] of original contents and stylized images.
Following WCT [20], we report the covariance matrix dif-
ference (VGG style loss [9]) between the style image and
the outputs of each model. Figure 9 shows SSIM (X-axis)
against style loss (Y-axis). Our proposed model (WCT2) re-
markably outperforms other methods.

Note that WCT2 and its variants are located at the top-
right corner, superior to PhotoWCT (full) and DPST that
perform post-processing. Here, DPST has strength on the
Gram-based score because it directly optimizes the style
loss. Still, it is far from being practical due to its heavy
optimization procedure (Table 1). As expected, when we
compare the results of our variants, the multi-level approach
adds more style (smaller Gram-based loss) at the expense of
noise amplification (larger SSIM index), which is even bet-
ter than the direct optimization (DPST).

In addition, by comparing the gap before and after
the post-processing steps (Figure 9, dashed lines), we can
clearly see that the final visual qualities of PhotoWCT
majorly come from the powerful post-processing, espe-
cially the smoothing step, not the network itself. The
original WCT with smoothing already shows a compara-
ble result to that of PhotoWCT. This demonstrates that the
unpooling substitution of PhotoWCT did not fully address
the information loss but the post-processing did.

https://github.com/ClovaAI/WCT2
https://github.com/ClovaAI/WCT2
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processing steps, i.e., smoothing. The baseline WCT2 with
concatenation is denoted by the red asterisk.

PhotoWCT (full)
Image Size DPST (WCT + post) Ours
256× 256 306.9 3.2 + 9.2 3.2
512× 512 1020.7 3.6 + 40.2 3.8
896× 896 2988.6 3.8 + OOM 4.4

1024× 1024 3887.8 3.9 + OOM 4.7

Table 1: Runtime comparision of DPST, PhotoWCT (full)
and ours in seconds. OOM denotes out-of-memory error.

Runtime & memory. Table 1 shows the runtime compar-
ison of DPST, PhotoWCT, and WCT2. For PhotoWCT, we
separately measured WCT and post-processing steps to bet-
ter compare with ours. The reported runtime for each model
is an average of ten-rounds run on a single NVIDIA P40
GPU. As expected, our model inherits the computational
time of the original WCT. Note that the concatenation in
unpooling hardly increases the runtime of WCT2. Because
our model can remove the cumbersome post-processing
steps, WCT2 can deal with high resolution images, such
as 1024 × 1024, maintaining a high quality of photoreal-
istic style transfer. Compared to DPST, WCT2 achieves a
speed-up of about 830 times in runtime. In addition, WCT2

uses only 51% GPU-memory of PhotoWCT, which uses a
multi-level stylization requiring four encoder-decoder mod-
els (Section 4.4) since WCT2 progressively stylize an image
using a single encoder-decoder.

User study. We conducted a user study to further eval-
uate the methods in terms of fewer artifacts, faithfulness to
the style input, and overall qualities. Our benchmark dataset
consists of content and style pairs provided by Luan et al.
[24]. Total 40 sets of questions were asked to 41 subjects,
in which subjects had to choose one among three stylized

DPSP PhotoWCT (full) Ours
Fewest artifacts 21.34% 9.33% 69.33%
Best stylization 30.49% 12.74% 56.77%
Most preferred 24.63% 11.16% 62.21%

Table 2: User study results. The percentage indicates the
preferred model outputs out of 1640 responses.

images from each model. The results are shown in ran-
dom order with content and style images. Table 2 shows
the percentage of model outputs that are chosen out of 1640
(= 40 × 41) responses. Our method is preferred by human
subjects against the other state-of-the-art methods by a large
margin in all aspects. Note that we compare our results with
PhotoWCT (full) that applies two post-processing steps pro-
posed by the authors [21] while we do not perform any post-
processing for WCT2. (Please see our supplementary mate-
rials for the images that are used for the user study)

Failure cases. Many photorealistic models [24, 21] in-
cluding ours require the semantic map and its accuracy is
important for better stylization results. In fact, this phe-
nomenon is more prominent in our model because WCT2

retains every fine detail unlike the others (Supplementary
materials). The effect of misaligned map is visible in our
result while PhotoWCT smooths it out unintentionally. Re-
solving the dependency on the semantic label map is an in-
teresting future research direction.

6. Conclusion
In this paper, we proposed the first end-to-end photoreal-

istic style transfer method, WCT2. Based on the theoretical
analysis, we specifically designed our model to satisfy the
reconstruction condition. The exact recovery of the wavelet
transforms allows our model to preserve structural infor-
mation while providing stable stylization without any con-
straints. By employing progressive stylization, we achieved
better results with less noise amplification. Compared to the
other state-of-the-arts, our analysis and experimental results
showed that WCT2 is scalable, lighter, faster and achieves
better photorealism quantitatively and qualitatively. Our re-
sults were preferred by human subjects in every aspect with
a significant margin. Future study will include removing the
necessity of semantic labels, which should be accurate for a
flawless result so far.
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A. Frame-based signal reconstruction
Our proposed model WCT2 is inspired by the recent theoretical advancement of frame-based signal reconstruction ap-

proaches [34, 35]. To make the paper self-contained, we provide a brief introduction to the frame theory (Section A.1),
tightness of Haar wavelets (Section A.2) and our theoretical motivation (Section A.3).

A.1. Perfect reconstruction condition

Consider an analysis operator Φ =
[
φ1 · · · φm

]
∈ Rn×m, where {φk}mk=1 is a family of functions in a Hilbert space

H . Then, {φk}mk=1 is called a frame if it satisfies the following inequality [7]:

α‖f‖2≤ ‖Φ>f‖2≤ β‖f‖2, ∀f ∈ H, (2)

where f ∈ Rn is an input signal and α, β > 0 are called the frame bounds.
The original signal f can be exactly recovered from the frame coefficient z = Φf when there is the dual frame Φ̃ (i.e.,

synthesis operator) satisfying the perfect reconstruction (PR) condition: Φ̃Φ> = I , since f = Φ̃z = Φ̃Φ>f = f . Here, we
call such frame tight (i.e., α = β in (2)) which is equivalent to Φ̃ = Φ or ΦΦ> = I . Note that a tight frame does not amplify
the power of the input and thus it has the minimum noise amplification factor. To achieve the best reconstruction performance,
frame bases should satisfy another property, called energy compaction. This is particularly important to parametric models,
which have to adaptively deal with varying amounts of information with a fixed number of parameters, e.g., deep neural
networks (DNNs). For example, singular value decomposition (SVD) provides both tight and energy compact bases given an
arbitrary signal. However, SVD is data-dependent, which makes it hard to use for a large dataset.

A.2. Wavelet frames

Wavelets are known to compactly represent signals while maintaining important information such as edges, thus resulting
in a good energy compaction [4]. Therefore, by using a tight wavelet filter-bank, we can improve the reconstruction perfor-
mance of encoder-decoder type of networks with minimal noise amplification. Specifically, the non-local basis ΦT is now
composed of a filter bank:

Φ = [T1 · · ·TL], (3)

where Tk denotes the k-th subband operator and the filter bank is tight, i.e.

ΦΦT =

L∑
k=1

TkT
T
k = I. (4)

In this paper, we use Haar wavelets which is one of the simplest tight filter bank frames with low and high sub-band
decomposition. Here, T1 ∈ Rn

2×n is the low-pass subband. This is equivalent to the average pooling:

T>1 =
1√
2


1 1 0 0 · · · 0 0
0 0 1 1 · · · 0 0

...
. . .

...
0 0 0 0 · · · 1 1

 . (5)

Then, T2 is the high pass filtering given by

T>2 =
1√
2


1 −1 0 0 · · · 0 0
0 0 1 −1 · · · 0 0

...
. . .

...
0 0 0 0 · · · 1 −1

 (6)

and we can easily see that

T1T
T
1 + T2T

T
2 = I, (7)

so the Haar wavelet frame is tight.



A.3. Theoretical motivation

In the perspective of the frame-based signal reconstruction, the commonly used encoder-decoder convolution structure
of deep neural networks (DNNs), such as U-net [28], can be interpreted as the data-driven way of learning the local bases
Ψ (e.g., convolution filters) with hand-crafted global bases Φ (e.g., max-pooling) [34]. Recently, Ye et al. [34] interpreted
training DNNs as finding a multi-layer realization of the convolution framelets [35]:

Z = ΦT (f ~ Ψ) (8)

f =
(

Φ̃Z
)
~ Ψ̃, (9)

where Φ = [φ1, · · · , φn] and Φ̃ = [φ̃1, · · · , φ̃n] ∈ Rn×n (resp. Ψ = [ψ1, · · · , ψq] and Ψ̃ = [ψ̃1, · · · , ψ̃q] ∈ Rd×q) are frames
and their duals. Here, ~ stands for the convolution operation.

Therefore, the convolutional layers of the encoder learns the signal representation with a global pooling operation. We
refer to Φ as global bases because it observes the entire image dimension n while Ψ learns local features from the data by
d× d convolution kernels of q channels. When these frames satisfy the PR condition:

Φ̃Φ> = In×n, ΨΨ̃> = Id×d, (10)

the input signal f can be exactly recovered from the learned representations. Note that the encoder-decoder architectures of
WCT [20] and PhotoWCT [21] cannot satisfy the perfect reconstruction condition because of the max-pooling, which does
not have its exact inverse (i.e., not a frame). On the other hand, our model WCT2 can fully exploit the information from
the encoder due to the favorable property of the wavelet decomposition and reconstruction, i.e., Haar wavelet pooling and
unpooling.

A.4. Proposed network architecture
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Figure 10: The proposed module using Haar wavelet pooling and unpooling.
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Figure 11: Overview of the proposed progressive stylization. For the encoder, we perform WCT on the output of convX_1
layer and skip connections. For the decoder, we apply WCT on the output of convX_2 layer, which is optional.

In Figure 10, a pair of encoder and decoder at same scale are shown. WCT is performed on the output of VGG convX 1
layer followed by subsequent VGG layers and wavelet pooling. Only the low component passes to the next layer and the
high frequency components are directly skipped to the corresponding decoding layer. At the decoder, the components are
aggregated by the wavelet unpooling.



A.5. Differences to PhotoWCT and Wavelet corrected transfer based on AdaIN (WCT-AdaIN)

Our method shares the motivation with PhotoWCT but the way we posit the problem and reach to its solution is funda-
mentally different from PhotoWCT: i) We showed that the reason why PhotoWCT fails in preserving spatial information is
because pooling and unpooling operations cannot satisfy the frame condition ii) Based on this theoretical analysis, our
model architecture is specifically designed to perfectly preserve spatial structure, which is proved effective in theory
and practice. This removes the necessity of post-processing, thus making our model far more practical and powerful than
the previous methods. iii) The wavelet corrected model is by no means limited to a specific stylization method. It can serve
as a general architecture for photorealistic style transfer, which is compatible with various methods, e.g., AdaIN (Figure
12 (c)). Currently, our method (WCT2) can process 1k resolution image in 4.7 seconds and this can be accelerated further
(∼1 second) by employing adaptive instance normalization (AdaIN) instead of time-consuming SVD procedure.

(a) Inputs (b) PhotoWCT (c) Ours (AdaIN) (d) Ours (WCT)

Figure 12: Photorealistic style transfer results of (a) input pairs using (b) PhotoWCT, (c) Ours (AdaIN) and (d) Ours (WCT).
(c) is the results using our model architecture combined with AdaIN as the stylization method, and (d) is WCT2 (proposed).

A.6. Qualitative comparison with artistic style transfer results

We compare our proposed WCT2 with popular artistic style transfer methods including NeuralStyle [9], AdaIN [14]
and WCT [20] in Figure 13. To apply semantic segmentation map to the artistic style transfer methods, we followed the
spatial control techniques proposed by the authors [24, 14, 20] respectively. In the figure, artistic style transfer methods
generate undesired distortions and artifacts and often fail to maintain the structural information despite the spatial control
with segmentation maps. In comparison, because of the proposed wavelet corrected transfer, our proposed WCT2 prevents
unrealistic artifacts and preserve the structure information such as edges.

A.7. Additional Qualitative comparison with photorealistic style transfer

Additional qualitative results using WCT2 and its variants are shown in Figure 14, Figure 15 and Figure 16. The video
stylization results can be found in one of the other supplementary materials.



(a) Input (b) NeuralStyle [9] (c) AdaIN [14] (d) WCT [20] (e) Ours (WCT2)

Figure 13: Qualitative comparison with artistic style transfer results. Given (a) an input pair (top: content, bottom: style), we
compare the results of (b) NeuralStyle [9], (c) AdaIN [14] (d) WCT [20] and (e) ours (WCT2).



(a) Input (b) DPST [24] (c) PhotoWCT [21] (d) PhotoWCT (full) [21] (e) Ours (WCT2)

Figure 14: Photorealistic style transfer results. Given (a) an input pair (top: content, bottom: style), we compare the results of
(b) deep photo style transfer (DPST) [24], (c) and (d) PhotoWCT [21] and (e) ours (WCT2). (c) is the results of PhotoWCT
without any post-processing and (d) shows the results after applying two post-processing steps proposed by the authors [21].



(a) Input (b) DPST [24] (c) PhotoWCT [21] (d) PhotoWCT (full) [21] (e) Ours (WCT2)

Figure 15: Photorealistic style transfer results. Given (a) an input pair (top: content, bottom: style), we compare the results of
(b) deep photo style transfer (DPST) [24], (c) and (d) PhotoWCT [21] and (e) ours (WCT2). (c) is the results of PhotoWCT
without any post-processing and (d) shows the results after applying two post-processing steps proposed by the authors [21].



(a) Input (b) WCT2 (c) WCT2 (sum) [21] (d) WCT2 (+multi-level) [21] (e) WCT2 (+decoder)

Figure 16: Photorealistic style transfer results. Given (a) an input pair (top: content, bottom: style), we compare the results of
WCT2 and its variants, i.e., (b) WCT2, (c) WCT2 (sum) (d) WCT2 (+multi-level) and (e) WCT2 (+decoder).


