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Ensuring the real-world applicability of machine learning (ML) models poses a primary challenge, namely,
the ability to generalize effectively to unseen scenarios encountered beyond the training phase. There
are three prominent scenarios frequently encountered in practical applications: (1) when input data sig-
nificantly differs from the training data; (2) when the model faces the target behavior beyond the scope
of training targets, such as unexplored labels; and (3) when the application needs human opinions or
subjective value judgments. Addressing these scenarios demands more than massive large-scale datasets;
it needs the inclusion of human knowledge that extends beyond web-crawled content. However, how can
we effectively integrate large-scale training and human knowledge guidance? To answer the question,
my research aims to expand the knowledge of large-scale ML models by more controllability and inter-
pretability, enabling human intervention to guide model behavior even after the training phase. In this
research statement, I will explain my three research themes to achieve this goal: (1) Language-combined
representation learning, (2) Reliable machine learning, and (3) Optimization techniques for large-scale
ML. The first two themes aim to expand machine knowledge in terms of interpretability, controllability,
and generalizability, while the last theme is towards practical machine learning algorithms at scale.

Language-combined Representation Learning

Language serves as the most natural method for encoding human knowledge. If our model can compre-
hend human language alongside the target modality, we can understand the model better by interventing
the space with human language. How can we make a model comprehend human language alongside the
target modality? One possible direction for learning language-combined representations is to encode the
inputs to the shared embedding space. Despite the recent success of the joint embedding space approach
(e.g., CLIP), my recent works have shown that we cannot truly solve the problem by conventional de-
terministic approaches. Another possible line of research is to leverage recent strong generative models,
such as diffusion models or large language models (LLMs). I believe that bridging the gap between
generative models and representation learning remains an under-explored frontier with huge potential.
In the remaining section, I will delve into the details of these two approaches.

Tackling multiplicity and false negatives of image-text matching tasks. As language descrip-
tions are the product of conscious choices of the key relevant concepts to report from input data, language-
combined representation learning methods often suffer from the multiplicity (or many-to-many problem)
between modalities. In image-text matching (ITM) tasks, this problem is even more serious because there
are abundant false negatives (FNs) in the dataset, where we treat the “aligned” image-text pair as the
only positive. Assume that we have a “good” image (or text) encoder that understands the semantics of
inputs. Then, we can assume that this encoder will map semantically similar images (or captions) to very
close locations in the embedding space. In other words, we can approximate these semantically similar
image (or caption) embeddings as one unified embedding. Unfortunately, as our dataset has a lot of FNs,
the approximated unified image embedding and caption embedding will have a “uncertain” match, i.e.,
the annotation of the match will be either positive or negative (See Figure 1a). My recent works address
this problem by understanding and addressing the multiplicity problem by probabilistic representation
learning, e.g., PCME++ [1] and PCME [2]. In this paradigm, an input is mapped to a probabilistic
distribution rather than a deterministic vector. This approach enhances the interpretability of datasets
and user controllability (e.g., understanding datasets by input uncertainty or uncertainty-based zero-shot
prompt tuning). However, not only learning paradigm is required to tackle this problem; we also need a
correct and reliable ITM benchmark. For example, in the ECCV Caption paper [3], I built an image-text
matching benchmark that fixes numerous FNs in the COCO Caption dataset. In this work, I revealed
that the COCO Caption evaluation set has ×3.6 positive captions and ×8.5 positive images compared
to the original annotations. Another example is the RoCOCO benchmark [4], a robustness benchmark
for the COCO image-text matching task; we showed that current VL models often retrieve captions with
a different meaning (e.g., changing “man” to “woman” or “umbrella” to “gun”) as the best matching
caption to the given query image. The overview of my representative works in addressing many-to-many
correspondences caused by abundant FNs is illustrated in Figure 1.
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(a) False negatives (FNs) are the source of ambiguity; A prob-
abilistic embedding approach for tackling the problem [1, 2].
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(b) Fixing ITM benchmarks from abundant FNs
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Figure 1: Two approaches for tackling multiplicity and FNs in image-text matching (ITM) tasks.
(a) Probabilistic embeddings for solving the multiplicity by FNs – PCME (Chun et al., 2021 [2]), PCME++
(Chun, 2023 [1]). (b) Fixed MS-COCO Caption evaluation annotations – ECCV Caption (Chun et al., 2022 [3]).

Leveraging the knowledge of the powerful pre-trained models. The existing language-combined
representation learning approaches focus on learning a specialized model with selectively collected text-
aligned training datasets. However, it limits the generalizability of the models, i.e., we cannot apply the
method to the other types of datasets rather than the training dataset. One of my recent research interests
is to address this problem by leveraging knowledge of strong pre-trained models, such as generative models
(e.g., diffusion models and large language models (LLMs) trained on extensive billion-scale web-curated
datasets) or multi-modal joint embedding models (e.g., CLIP and CLAP). To illustrate this approach,
consider the task of composed image retrieval (CIR), which relies on triplets of an image query, a text
query, and a target image. Here, obtaining such triplets can be prohibitively expensive and sometimes
unfeasible. Therefore, existing CIR methods are trained only on small-scale triplet CIR datasets and
struggle to adapt to in-the-wild retrieval scenarios. Moreover, these existing methods are not flexible;
they cannot handle versatile conditions beyond a limited textual one (See Figure 2a). In our CompoDiff
paper [5], we address these challenges by employing two key ideas: (1) a massive synthetic dataset with a
fine-tuned LLM and StableDiffusion models and (2) a versatile latent diffusion model that takes various
conditions (e.g., negative text, masked condition, or combinations of them) by classifier-free guidance.
Another interesting idea is to train methods only with language inputs by relying on powerful pre-trained
VL models, such as CLIP. In LinCIR paper [6], we train a projection module from the CLIP textual
latent embedding space to the token embedding space only using texts. This surprisingly simple method
shows both efficiency and effectiveness on ZS-CIR tasks (See Figure 2b). I think there are a number of
interesting directions for leveraging the power of recent powerful pre-trained models. These may include
data augmentation with high fidelity and controllability of the recent generative models, the adaptation
of a visual module to LLMs, or fine-tuning LLMs with non-language inputs.

(a) Fusion-based approaches
(e.g., ARTEMIS, Combiner)

(b) Inversion-based approaches
(e.g., Pic2Word, SEARLE)
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(a) Leveraging powerful diffusion models for CIR tasks [5].
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(b) Overview of simple language-only
training for ZS-CIR [6].

Figure 2: Enabling versatile and generalizable CIR by utilizing powerful pre-trained models. (a) In
the CompoDiff paper (Gu and Chun et al. [5]), we address the drawbacks of the existing methods originated by
the cost of triplet collection and the inherent inflexibility by (1) synthesizing a massive dataset and (2) highly
controllable diffusion models with various conditions. (b) In the LinCIR paper (Gu and Chun et al. [6]), we train
a CIR model only using text inputs, resulting in a high scalability and effectiveness.
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Machine Learning Reliability

Existing machine learning models cannot understand the problem itself [7]. This causes many realistic
problems, such as discrimination by machines and poor generalizability to unseen (or minor) corruptions,
environments, or groups. Current state-of-the-art machines only do “predict”, rather than “logical
thinking based on logical reasoning”. As models prefer to learn by shortcuts [8, 7], just training models
as usual will lead to biased models. I am interested in investigating these phenomena with various tools.

If it is difficult to make machines understand the problem itself, what can we do? Our model should
not learn undesirable shortcut features [9, 10], or should be robust to unseen corruptions [11, 12, 13, 14]
or significant distribution shifts [15, 16]. Also, we need to make a machine not discriminative to certain
demographic groups [17, 18]. We expect a model to say “I don’t know” when they get unexpected
inputs [2, 1]. At least, we expect a model can explain why it makes such decisions [19, 20, 21, 22],
how different model design choices will change model decisions [23, 24] and how it can be fixed (e.g.,
more data collection? more annotations? or filtering?). My research focuses on expanding machine
knowledge from “just prediction” to “logical reasoning”. In recent years, I have concentrated on tackling
various generalization downstream tasks, such as de-biasing [9, 10, 8, 7], domain generalization [15, 16],
algorithmic fairness [17, 18], and adversarial robustness [23]. I think most of these tasks can be explained
by Figure 3; we expect a model to focus on “signal S”, but there is a spurious correlated feature “bias
B”. Different downstream tasks target different training dataset scenarios with different assumptions of
the test signal-bias correlation. As these tasks aim to tackle situations when the training information
and the evaluation information are not the same (e.g., different test dataset distributions), I have strong
research principles for these topics: (1) the methods should be theoretically sound [9, 17, 18, 15, 16], and
(2) the evaluation benchmark should be designed in a correct way [3, 12, 21, 22].
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Figure 3: Two representative learning scenarios for distribution shifts. Cross-domain and cross-bias
scenarios correspond to domain generalization and de-biasing tasks, respectively. Roughly speaking, algorithmic
fairness can be viewed as a more targeted version of “cross-bias”. The figure is from the ReBias paper [9].

As of now, I am more interested in solving the machine learning reliability or generalizability problem
by language-combined representation learning. For example, a vision-language (VL) model trained on
large-scale datasets can be easily generalized to various corruptions (e.g., noise, blur), different domains
(e.g., cartoon, sketch), or less commonly happened situations (e.g., car in the sky, elephant with zebra
skin). Of course, a web-curated dataset can be biased to various types of discriminations (e.g., web
images with English captions might be biased to countries using English). However, in general, I think
this approach can address many problems that we have targeted before. Similarly, we can expect to
make a model more “explainable” by using language guiding, e.g., by letting a model give a rationale
for the decision in a human language. There have been a few primitive studies in this area, and I think
this direction is worth exploring. The existing VL models cannot directly tackle the uncertainty issue
(e.g., estimating the correct confidence of the model prediction), but my previous attempts show that
migrating the concept of the uncertainty estimation and VL training is somewhat possible in a small-
scale dataset with neglectable sacrifices [2, 1]. Another interesting idea could be directly estimating its
confidence as a language output (e.g., 75% confident), which is similar to the XAI with human language.
Algorithmic fairness is a possible limitation of the current VL training because it is (usually believed to
be) originated from the training dataset. I think that we should keep working on algorithmic fairness for
this approach. Overall, I think that language-combined representation learning, my first research theme,
can be a potential candidate to target the machine learning reliability problem; while we should keep
our eyes on algorithmic fairness to overcome the inherent discrimination of web-curated datasets.
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Optimization Techniques for Large-scale ML

Last but not least, I have actively worked on developing general optimization techniques for large-scale
ML models. Although we have a number of great practices for large-scale optimization, I believe we
still need to develop more optimization techniques to solve our problems. My research emphasizes
two key objectives: empirical impact and theoretical soundness. For the empirical impact, I aim to
develop easy-to-use techniques that seamlessly function as plug-and-play solutions. I am also eager to
develop theoretical sound methods, not based on heuristics and heavy parameter tuning. For example,
AdamP [25] can be applied to any method as a plug-and-play solution with minimal changes to the
source code. At the same time, we showed that AdamP solves the theoretical problem of the drastic
effective learning rate decay problem of scale-invariant parameters. All of my image-text matching
cross-modal retrieval works [2, 1] are based on AdamP because their `2 normalization layers make scale-
invariant parameters, resulting in suboptimal results with the existing optimizers. Similarly, SWAD [15]
is another plug-and-play solution for domain generalization (DG) algorithms and now the rule-of-thumb
to achieve state-of-the-art performance on the benchmarks. In the paper, we have shown the theoretical
relationship between flatness and domain generalization and proposed a practical modified version of
SWA, a flatness-aware optimizer, for domain generalization tasks. Now, SWAD is essential for achieving
a better DG performance, making researchers focus more on algorithms than the optimizer selection.

My research interests include wide areas, such as data augmentation (usually based on mixed sample data
augmentation, such as CutMix [11]) [11, 26, 10], storage-efficient learning [27, 13, 28], optimizer [25, 15],
network architecture [14, 29, 30], refined labels [13], and theoretical understanding for optimization
techniques [26]. I aim to develop a globally applicable algorithm regardless of the dataset domain or
architecture. For example, CutMix [11] is now one of the famous data augmentation methods widely used
for applications in the vision or audio domain. In the AdamP paper [25], we showed that AdamP could
improve the model performances in 13 different benchmarks ranging from vision tasks like classification,
retrieval, and detection to language modeling and audio classification.

I also have worked on domain-specific optimization techniques by using assumptions on the structure of
data, e.g., the compositionality of Korean/Chinese letters [31, 32, 33, 34, 35], low- and high- frequency
information for better audio understanding [36] and style transfer [37], or harmonic information for multi-
source audio understanding [38, 39]. Although these approaches are not globally applicable as my main
focus, I recognize that if we can properly model the human inductive bias to a model, we can drastically
improve the trial-and-error of the model where we will need a tremendously large number of data points
with data-driven methods; it is especially beneficial when the training data collection is expensive (e.g.,
font generation [31, 32, 33, 34, 35]) or legally vague (e.g., music modeling [19, 20, 38, 39]).

Similar to my perspective on machine learning reliability (the second theme), my current main interest
lies in language-combined representation learning (the first theme). As one of the key factors of language-
combined representation learning is large-scale optimization, I think that developing a theoretically sound
and empirically easy-to-use optimization technique will be helpful for my main research theme.

References

[1] Sanghyuk Chun. Improved probabilistic image-text representations. arXiv preprint arXiv:2305.18171, 2023.

[2] Sanghyuk Chun, Seong Joon Oh, Rafael Sampaio De Rezende, Yannis Kalantidis, and Diane Larlus. Probabilistic
embeddings for cross-modal retrieval. In CVPR, 2021.

[3] Sanghyuk Chun, Wonjae Kim, Song Park, Minsuk Chang Chang, and Seong Joon Oh. ECCV Caption: Correcting
false negatives by collecting machine-and-human-verified image-caption associations for MS-COCO. In ECCV, 2022.

[4] Seulki Park, Daeho Um, Hajung Yoon, Sanghyuk Chun, Sangdoo Yun, and Jin Young Choi. RoCOCO: Robust
benchmark MS-COCO to stress-test robustness of image-text matching models. arXiv preprint arXiv:2304.10727,
2023.

[5] Geonmo Gu, Sanghyuk Chun, HeeJae Jun, Yoohoon Kang, Wonjae Kim, and Sangdoo Yun. CompoDiff: Versatile
composed image retrieval with latent diffusion. arXiv preprint arXiv:2303.11916, 2023.

[6] Geonmo Gu, Sanghyuk Chun, Yoohoon Kang, Wonjae Kim, and Sangdoo Yun. Language-only efficient training of
zero-shot composed image retrieval. arXiv preprint arXiv:2312.01998, 2023.

[7] Sanghyuk Chun, Kyungwoo Song, and Yonghan Jung. FAccT 2022 translation/dialogue tutorial: ”shortcut learning
in machine learning: Challenges, analysis, solutions”, 2022.

[8] Luca Scimeca, Seong Joon Oh, Sanghyuk Chun, Michael Poli, and Sangdoo Yun. Which shortcut cues will dnns
choose? a study from the parameter-space perspective. In ICLR, 2022.

[9] Hyojin Bahng, Sanghyuk Chun, Sangdoo Yun, Jaegul Choo, and Seong Joon Oh. Learning de-biased representations
with biased representations. In ICML, 2020.

4



[10] Sanghyuk Chun and Song Park. Styleaugment: Learning texture de-biased representations by style augmentation
without pre-defined textures. arXiv preprint arXiv:2108.10549, 2021.

[11] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo. CutMix:
Regularization strategy to train strong classifiers with localizable features. In ICCV, 2019.

[12] Sanghyuk Chun, Seong Joon Oh, Sangdoo Yun, Dongyoon Han, Junsuk Choe, and Youngjoon Yoo. An empir-
ical evaluation on robustness and uncertainty of regularization methods. In ICML Workshop on Uncertainty and
Robustness in Deep Learning., 2019.

[13] Sangdoo Yun, Seong Joon Oh, Byeongho Heo, Dongyoon Han, Junsuk Choe, and Sanghyuk Chun. Re-labeling
imagenet: from single to multi-labels, from global to localized labels. In CVPR, 2021.

[14] Byeongho Heo, Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Junsuk Choe, and Seong Joon Oh. Rethinking
spatial dimensions of vision transformers. In ICCV, 2021.

[15] Junbum Cha, Sanghyuk Chun, Kyungjae Lee, Han-Cheol Cho, Seunghyun Park, Yunsung Lee, and Sungrae Park.
SWAD: Domain generalization by seeking flat minima. In NeurIPS, 2021.

[16] Junbum Cha, Kyungjae Lee, Sungrae Park, and Sanghyuk Chun. Domain generalization by mutual-information
regularization with pre-trained models. In ECCV, 2022.

[17] Sangwon Jung, Sanghyuk Chun, and Taesup Moon. Learning fair classifiers with partially annotated group labels.
In CVPR, 2022.

[18] Sangwon Jung, Taeeon Park, Sanghyuk Chun, and Taesup Moon. Re-weighting based group fairness regularization
via classwise robust optimization. In ICLR, 2023.

[19] Minz Won, Sanghyuk Chun, and Xavier Serra. Toward interpretable music tagging with self-attention. arXiv
preprint arXiv:1906.04972, 2019.

[20] Minz Won, Sanghyuk Chun, and Xavier Serra. Visualizing and understanding self-attention based music tagging.
In ICML Workshop on Machine Learning for Music Discovery., 2019.

[21] Junsuk Choe, Seong Joon Oh, Seungho Lee, Sanghyuk Chun, Zeynep Akata, and Hyunjung Shim. Evaluating
weakly supervised object localization methods right. In CVPR, 2020.

[22] Junsuk Choe, Seong Joon Oh, Sanghyuk Chun, Seungho Lee, Zeynep Akata, and Hyunjung Shim. Evaluation for
weakly supervised object localization: Protocol, metrics, and datasets. arXiv preprint arXiv:2007.04178, 2020.

[23] Jisung Hwang, Younghoon Kim, Sanghyuk Chun, Jaejun Yoo, Ji-Hoon Kim, and Dongyoon Han. Where to be ad-
versarial perturbations added? investigating and manipulating pixel robustness using input gradients. ICLR Workshop
on Debugging Machine Learning Models, 2019.

[24] Jaehui Hwang, Dongyoon Han, Byeongho Heo, Song Park, Sanghyuk Chun, and Jong-Seok Lee. Similarity of neural
architectures based on input gradient transferability. arXiv preprint arXiv:2210.11407, 2022.

[25] Byeongho Heo, Sanghyuk Chun, Seong Joon Oh, Dongyoon Han, Sangdoo Yun, Gyuwan Kim, Youngjung Uh, and
Jung-Woo Ha. AdamP: Slowing down the slowdown for momentum optimizers on scale-invariant weights. In ICLR,
2021.

[26] Chanwoo Park, Sangdoo Yun, and Sanghyuk Chun. A unified analysis of mixed sample data augmentation: A loss
function perspective. In NeurIPS, 2022.

[27] Song Park, Sanghyuk Chun, Byeongho Heo, Wonjae Kim, and Sangdoo Yun. SeiT: Storage-efficient vision training
with tokens using 1pixel storage. In ICCV, 2023.

[28] Saehyung Lee, Sanghyuk Chun, Sangwon Jung, Sangdoo Yun, and Sungroh Yoon. Dataset condensation with
contrastive signals. In ICML, 2022.

[29] Hwanjun Song, Deqing Sun, Sanghyuk Chun, Varun Jampani, Dongyoon Han, Byeongho Heo, Wonjae Kim, and
Ming-Hsuan Yang. ViDT: An efficient and effective fully transformer-based object detector. In ICLR, 2022.

[30] Hwanjun Song, Deqing Sun, Sanghyuk Chun, Varun Jampani, Dongyoon Han, Byeongho Heo, Wonjae Kim,
and Ming-Hsuan Yang. An extendable, efficient and effective transformer-based object detector. arXiv preprint
arXiv:2204.07962, 2022.

[31] Junbum Cha, Sanghyuk Chun, Gayoung Lee, Bado Lee Lee, Seonghyeon Kim, and Hwalsuk Lee. Few-shot compo-
sitional font generation with dual memory. In ECCV, 2020.

[32] Junbum Cha, Sanghyuk Chun, Gayoung Lee, Bado Lee Lee, Seonghyeon Kim, and Hwalsuk Lee. Toward high-
quality few-shot font generation with dual memory. CVPR Workshop on AI for Content Creation, 2020.

[33] Sanghyuk Chun, Song Park, Junbum Cha, Bado Lee, and Hyunjung Shim. Few-shot font generation with localized
style representations and factorization. In AAAI, 2021.

[34] Song Park, Sanghyuk Chun, Junbum Cha, Bado Lee, and Hyunjung Shim. Few-shot font generation with weakly
supervised localized representations. IEEE Transactions on Pattern Analysis & Machine Intelligence, pages 1–17,
aug 5555.

[35] Song Park, Sanghyuk Chun, Junbum Cha, Bado Lee, and Hyunjung Shim. Multiple heads are better than one:
Few-shot font generation with multiple localized experts. In ICCV, 2021.

[36] Jang-Hyun Kim, Jaejun Yoo, Sanghyuk Chun, Adrian Kim, and Jung-Woo Ha. Multi-domain processing via hybrid
denoising networks for speech enhancement. arXiv preprint arXiv:1812.08914, 2018.

[37] Sanghyuk Chun, Jaejun Yoo, Youngjung Uh, Byeongkyu Kang, and Jung-Woo Ha. Photorealistic style transfer via
wavelet transforms. In ICCV, 2019.

[38] Minz Won, Sanghyuk Chun, Oriol Nieto, and Xavier Serra. Automatic music tagging with harmonic cnn. In Late
Breaking Demo in the ISMIR, 2019.

[39] Minz Won, Sanghyuk Chun, Oriol Nieto, and Xavier Serra. Data-driven harmonic filters for audio representation
learning. In ICASSP, 2020.

5


