
Recommender System
in the Real World
Sanghyuk Chun
Researcher @CLAIR (Clova AI Research)

About Me...

In Kakao...

In Kakao...

In Kakao...

In Kakao...

In Kakao...

In Kakao...

In Kakao...

In Kakao...

In Kakao...

In Kakao...

Contents

1. Introduction

2. Traditional Methods

3. Novel Methods

4. Real World Recommender System

Introduction to
Recommender System

What is a recommender
system?
A recommender system recommends items to
users to optimize a utility composed of one or
more objectives

Reference: RecSys 2016: Tutorial on Lessons Learned from Building Real-life Recommender Systems

RecSys Example 1: 
YouTube Up next

RecSys Example 2: 
YouTube Recommended

RecSys Example 3: 
LinkedIn Personalized Feed

RecSys Example 4: 
Amazon item recommendation

RecSys Example 5: 
Spotify Discover

https://medium.com/s/story/spotifys-discover-weekly-how-machine-learning-finds-your-new-music-19a41ab76efe

https://medium.com/s/story/spotifys-discover-weekly-how-machine-learning-finds-your-new-music-19a41ab76efe

RecSys Example 6: 
Netflix Recommendation

http://www.shalomeir.com/2014/11/netflix-prize-1/

http://www.shalomeir.com/2014/11/netflix-prize-1/

Amazon: 35% of the purchases are from recommendation

Alibaba: up to 20% growth of conversion rate from
personalized landing pages (during Chinese shopping
festival)

YouTube: 70% of the watching is from recommendation

Netflix: 75% of what people are watching on Netflix comes
from recommendations + Employing a recommender system
enables Netflix to save around $1 billion each year

https://tryolabs.com/blog/introduction-to-recommender-systems/

https://tryolabs.com/blog/introduction-to-recommender-systems/

Traditional Methods
- CF / CB
- Netflix Problem

Traditional Recommendations

Collaborative Filtering (CF)

A

B

C

1 2 3

1 3 4

5 6 7

4

https://en.wikipedia.org/wiki/Collaborative_filtering#/media/File:Collaborative_filtering.gif

https://en.wikipedia.org/wiki/Collaborative_filtering#/media/File:Collaborative_filtering.gif

https://en.wikipedia.org/wiki/Collaborative_filtering#/media/File:Collaborative_filtering.gif

https://en.wikipedia.org/wiki/Collaborative_filtering#/media/File:Collaborative_filtering.gif

Traditional Recommendations

Contents Based Filtering (CB)

Data for Recommendation

A

B

C

1 2 3

3 4 6

1 4 5

4 1
title: XXX
contents: XXX
thumb: XXX
cateogory: …
…

User History  
(rating, view, purchase, ...)

Content data
(metadata, raw data, ...)

A

B

C

1

2

6

3

4

5

A B C

1 1 1

2 1

3 1 1

4 1 1

5 1

6 1

A

B

C

1 2 3

3 4 6

1 4 5

4

Graph Form Matrix Form

Traditional CF methods

- Low Rank Matrix Factorization

Brief Overview of
Matrix Factorization

min
R̂

X

u,i2

(rui � r̂ui)
2 s.t. rank(R̂) = k.

min
P,Q

X

u,i2

(rui � pu · qi)2 + �(kpuk22 + kqik22).min
P,Q

X

u,i2

(rui � pu · qi)2 + �(kpuk22 + kqik22).

More readings

- [ALS + implicit feedback] Hu, Yifan, Yehuda Koren, and Chris Volinsky. "Collaborative
filtering for implicit feedback datasets." Data Mining, 2008. ICDM'08. Eighth IEEE International
Conference on. Ieee, 2008.

- [Overview paper] Koren, Yehuda, Robert Bell, and Chris Volinsky. "Matrix factorization
techniques for recommender systems." Computer 8 (2009): 30-37.

- [PMF] Mnih, Andriy, and Ruslan R. Salakhutdinov. "Probabilistic matrix
factorization." Advances in neural information processing systems. 2008.

- [Logistic MF] Johnson, Christopher C. "Logistic matrix factorization for implicit feedback
data." Advances in Neural Information Processing Systems 27 (2014).

- [BPR-MF] Gantner, Zeno, et al. "Personalized ranking for non-uniformly sampled
items." Proceedings of KDD Cup 2011. 2012.

- [AutoEncoder] Wang, Hao, Naiyan Wang, and Dit-Yan Yeung. "Collaborative deep learning
for recommender systems." Proceedings of the 21th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. ACM, 2015.

Recommendation using
features
Item-to-item recommendation

- return "most K-similar items" to the query item

Personalized recommendation

- return items observed by "most K-similar users"
to the query user

Limitation of CF

- Cold start: There needs to be enough other
users already in the system to find a match.
New items need to get enough ratings.

- Popularity bias: Hard to recommend items to
someone with unique tastes. Tends to
recommend popular items (items from the tail
do not get so much data)

https://www.slideshare.net/xamat/recommender-systems-machine-learning-summer-school-2014-cmu

https://www.slideshare.net/xamat/recommender-systems-machine-learning-summer-school-2014-cmu

CF vs. CB

https://www.slideshare.net/xamat/recommender-systems-machine-learning-summer-school-2014-cmu

https://www.slideshare.net/xamat/recommender-systems-machine-learning-summer-school-2014-cmu

Ensemble methods

https://www.slideshare.net/xamat/recommender-systems-machine-learning-summer-school-2014-cmu

https://www.slideshare.net/xamat/recommender-systems-machine-learning-summer-school-2014-cmu

Netflix Prize

2006.10 ~ 2009.07

Improve by 10% RMSE = $ 1M! 
(Winner Takes ALL!)

Baseline algorithm (Cinematch): 0.9525

Winners of Netflix Prize

Grand Prize: team "BellKor’s Pragmatic Chaos"

- 2007 Winner: team "BellKor" (Bell & Koren) 
(improved by 8.26%)

- 2008 Winner: team "BellKor in Chaos" 
(Union of team BellKor and team Big Chaos) 
(improved by 9.44%)

Winners of Netflix Prize

- Final Winner: "BellKor's Pragramatic Chaos" 
(Union of team BellKor, team Big Chaos and
Pragmatic Theory) 
(improved by 10.06%)

For achieving 10% improvement,  
it takes about 3 years!

"That 20 minutes was worth a million dollar"

http://www.shalomeir.com/2014/12/netflix-prize-3/

http://www.shalomeir.com/2014/12/netflix-prize-3/

Koren, Yehuda, Robert Bell, and Chris Volinsky. "Matrix factorization techniques for recommender systems." Computer 8 (2009): 30-37.

Recap: Cinematch (0.9525)

Evaluation of
Recommender System
Offline evaluation

- RMSE / MAE, ...

- precision / recall / AUC, ...

- ranking metrics: NDCG, MAP, MRR, ...

Not directly related to real world user behaviors

Evaluation of
Recommender System
Online evaluation

- CTR (Click-Through-Ratio)

- Cost per action, cost per click,

- PV / UV /

'Expensive' A/B test is required (also it is noisy)

https://www.slideshare.net/kimkwangseop/toros-python-framework-for-recommender-system

https://www.slideshare.net/kimkwangseop/toros-python-framework-for-recommender-system

https://www.slideshare.net/kimkwangseop/toros-python-framework-for-recommender-system

https://www.slideshare.net/kimkwangseop/toros-python-framework-for-recommender-system

https://www.slideshare.net/kimkwangseop/toros-python-framework-for-recommender-system

https://www.slideshare.net/kimkwangseop/toros-python-framework-for-recommender-system

More Novel Methods
Learning to Rank
Explore / Exploit
Session Based Recommendation
Deep Learning

It's the RANKING, stupid

https://www.slideshare.net/xamat/recommender-systems-machine-learning-summer-school-2014-cmu

https://www.slideshare.net/xamat/recommender-systems-machine-learning-summer-school-2014-cmu

Lessons from RMSE

Rating (explicit feedback) is noisy than
preference (implicit feedback) in many cases

Ranking by rating is not best ranking

https://www.slideshare.net/xamat/recommender-systems-machine-learning-summer-school-2014-cmu

https://www.slideshare.net/xamat/recommender-systems-machine-learning-summer-school-2014-cmu

Learning to rank

Learning to rank is the machine learning
problem to optimize 'ranking' from ranked data

Generally, training data is partially observed!

By constructing ranking model directly, one can
reconstruct ranking of the unobserved data

Learning to rank (pairwise)

Data: pairwise observation (preference)

Example model: Bradley–Terry (BTL) model

A B

A C

B C

<

>

?

Example algorithm for BTL model:
Rank Centrality
Build graph from pairwise data as the following

i j

i selected / (# i selected + # j selected)

j selected / (# i selected + # j selected)

Negahban, Sahand, Sewoong Oh, and Devavrat Shah. "Rank centrality: Ranking from pairwise comparisons.
Operations Research 65.1 (2016): 266-287.

Rank Centrality

Algorithm: random walk on the graph until
converged (Markov chain, similar to PageRank)

=> stationary distribution equals to rank!

Rank Centrality

Algorithm: random walk on the graph until
converged (Markov chain, similar to PageRank)

=> stationary distribution equals to rank!

Example:
StarCraft + Rank Centrality

Edge	list	of	match-up
record

Total	340	player,	9100	match	
for	11	years

Competition	 record(undirected)

Top	10
Young-ho	Lee
Jea-Dong	Lee
Teak-Yong	Kim
Byoung-Goo	 Song
Myeong-Hoon Jeong
Bo-Sung	Yeom
Yong-Tae	Yoon
Jae-Ho	Lee
Sang-Moon	Shin
Myeoung-Woon Kim

Metric for Ranking

NDCG (Normalized Discounted Cumulative Gain)

Mean Average Precision (MAP)

Mean Reciprocal Rank (MRR)

....

The measurements are NOT differentiable

Models for learning to rank

Pointwise Models

estimate ranking by computing score for each
example then sorting by the score (based on
regression or classification)

data: (i, j, relevance score)

- Logistic regression, PRank, MCRank ...

Models for learning to rank

Pairwise Models

constructing pairwise rank model by minimizing
inversions in the given pairs (the problem is
transformed into a binary classification)

data: (i, j, preference)

- RankNet, SVMRank, AdaRank,
LambdaMART...

Models for learning to rank

Listwise Models

Directly (non-differential) optimizing rank metric
such as NDCG, MAP

Could be solved by genetic algorithm, simulated
annealing, relaxation ...

Learning to rank

Directly optimize ranking in offline

Even though learning to rank optimize ranking, it
still does not optimize 'profit' (CTR) directly

More Novel Methods
Learning to Rank
Explore / Exploit
Session Based Recommendation
Deep Learning

Multi-armed Bandit Problem

- K arms with unknown reward distributions
- Maximize reward (or minimize regret) over time T
- Each time, a policy select a single arm and receive reward

Example: Bernoulli bandit

A B C

Reward: 0
Reward: 1

50%
50%

30%
70%

80%
20%

Select: A A B B B B B C A B B B ..

Reward: 1 0 1 0 0 1 1 0 1 1 1 1 ..

Exploration vs. Exploitation

Exploration: Since we have no information of
each arm, we have to ‘explore’ unknown arms
repeatedly

Exploitation: Play the best arm (empirically) to
get large reward

Trade off between exploration and exploitation

Algorithm (Epsilon greedy)

with probability 1 - e, Play best arm

with probability e, Play a random arm

After enough large exploration, epsilon greedy
play randomly with probability epsilon

Algorithm (UCB)

UCB (Upper Confidence Bound)

(UCB 1)

Algorithm (Thompson
Sampling)

Chapelle, Olivier, and Lihong Li. "An empirical evaluation of thompson sampling." Advances in
neural information processing systems. 2011.

Bandit in Recommender System

5%

Oracle CTR

8%

2%

1%

Question:
Which item should we serve to users?
How can we find such items 'online'?

Bandit in Recommender System

Think each item as the arm of the bandit

Than, reward is click and 
reward distribution is equal to CTR

Now, we can find the item with best CTR while
dealing with explore / exploit trade-off!

Limitation of MAB in real world

Stochastic bandit assumes the following

- Each time, bandit only choose single arm  
(i.e., observe only single item)

- Immediately feedback (most of cases, users don't
click item directly)

- Number of arms are finite and fixed  
(in real world, there is a 'life-cycle' of item  
+ new item appears frequently)

Limitation of MAB in real world

Stochastic bandit assumes the following

- (cont) arm is stationary (there is 'positional
bias' and CTR of each item is affected by  
co-recommend items)

Modified MAB for RecSys

A

B

C

D

Arms: candidates for
recommendation (by CF, CB, learning
to rank, ...)

A

C

Multi-play Bandit!
(sorted by expected CTR, displayed items)
+ discounted penalty for lower rank item

IMP-TS (improved MP-TS)

For K-1 items,
instead of sampling from Beta,
sorted by empirical mean

Komiyama, Junpei, Junya Honda, and Hiroshi Nakagawa. "Optimal regret analysis of thompson sampling in stochastic multi-
armed bandit problem with multiple plays." ICML 2015

Personalization using MAB

Note that MAB requires MANY experiments until
converge to near optimal

One bandit for one person = random reco.

Semi-personalization using
MAB

A

B

C

D

One bandit for one user
cluster
= better than random

Questions)
- How to clustering?
- Still not fully 'personalized'

Contextual Bandit

Li, Lihong, et al. "A contextual-bandit approach to personalized news article recommendation." Proceedings of the 19th
international conference on World wide web. ACM, 2010.

For each time, contextual vector xt,a is observed
(related to both user and item)

Contextual Bandit (LinUCB)

- at time t, user ut observes arm a with context vector
xt,a

- context vector xt,a summarizes information of both
the user ut and arm a

- θa is a learning parameter for each arms

- Note: if x is constant, it is exactly same as stochastic
bandit

E [rt,a|xt,a] = x>
t,a✓

⇤
a

Contextual Bandit (LinUCB)

How to UCB?

- Exploit only: select maximum expectation

- UCB: consider variance

E [rt,a|xt,a] = x>
t,a✓

⇤
a

Contextual Bandit (LinUCB)

Problem: how to choose context vector x?

Recall: a context vector x summaries both arm a
(article) and user u

Short Answer: Run user clustering using article-
related feature make context vector (6-
dimensional vector), i.e., we have to run
clustering as number of articles

LinUCB: Context (details)

- Article feature: 83D categorical feature

- URL categories: tens of classes

- editor categories: tens of topics tagged by human

- User feature 1193D categorical feature

- Demographic categories: 2 gender * 5 age band

- Geographic features: about 200 locations

- Behavioral categories: about 1000 binary categories that
summarize the user consumption history within Yahoo

LinUCB: Context (details)

- To dimension reduction, project user feature onto
article categories and then cluster users

- First, fit bilinear logistic regression  
to CTR using user/article feature

- Project user feature to article feature by

- Run k-means onto with k=5

- Final 6D user feature x:  
cluster indicator 5D + constant 1

�>
uW�a

 u = �>uW

 u

More readings

- [Survey] Burtini, Giuseppe, Jason Loeppky, and Ramon Lawrence. "A
survey of online experiment design with the stochastic multi-armed
bandit." arXiv preprint arXiv:1510.00757 (2015).

- [Empirical Study] Chapelle, Olivier, and Lihong Li. "An empirical
evaluation of thompson sampling." Advances in neural information
processing systems. 2011.

- [Advanced contextual bandit for recommendation] Vanchinathan,
Hastagiri P., et al. "Explore-exploit in top-n recommender systems via
gaussian processes." Proceedings of the 8th ACM Conference on
Recommender systems. ACM, 2014.

- [Book] Agarwal, Deepak K., and Bee Chung-Chen. "Statistical
methods for recommender systems." (2016).

More Novel Methods
Learning to Rank
Explore / Exploit
Session Based Recommendation
Deep Learning

Define 'Session'

A

B

C

1 2 3

3 4 6

1 4 5

4 3 4 6 1

6

Why session based?

Subsequent sessions of the same user should
be handled independently

Favorites of users could be changed by time

Maybe session contains "context" information

(Practically) session data could be handled in
'incremental' way while matrix data couldn't

Session-based recommendations
with recurrent neural networks

Hidasi, Balázs, et al. "Session-based recommendations with recurrent neural networks." ICLR 2016

in a nutshell: Next-item prediction

Personalizing Session-based
Recommendations with Hierarchical
Recurrent Neural Networks

Quadrana, Massimo, et al. "Personalizing session-based recommendations with hierarchical recurrent neural
networks." Proceedings of the Eleventh ACM Conference on Recommender Systems. ACM, 2017.

Neural Attentive Session-based
Recommendation

Li, Jing, et al. "Neural attentive session-based recommendation." Proceedings of the 2017 ACM on
Conference on Information and Knowledge Management. ACM, 2017.

More Novel Methods
Learning to Rank
Explore / Exploit
Session Based Recommendation
Deep Learning

Deep learning for CB
(without user history)
Similarity measure using pre-trained deep
models (VGG, ResNet,)

Any deep model could be used for measuring
'similarity' of the given items

t-SNE visualization of clothing items' visual features embedding. Distinctive classes of
objects, e.g. those that share visual similarities are clustered around the same region of
the space.

https://www.researchgate.net/figure/t-SNE-visualization-of-clothing-items-visual-features-embedding-Distinctive-classes-of_fig5_322355346

https://www.researchgate.net/figure/t-SNE-visualization-of-clothing-items-visual-features-embedding-Distinctive-classes-of_fig5_322355346

Deep content-based
music recommendation

CF item feature

http://benanne.github.io/2014/08/05/spotify-cnns.html

http://benanne.github.io/2014/08/05/spotify-cnns.html

Collaborative Deep Metric Learning
For Video Understanding

Target: triplet loss (positive: co-watch, co-clicked, ...)

Lee, Joonseok, et al. "Collaborative Deep Metric Learning for Video Understanding." (2018).

1 2 3 4

3 2 5

4 1 5

Could embed users into
feature space using their
watching history

Lee, Joonseok, et al. "Collaborative Deep Metric Learning for Video Understanding." (2018).

Lee, Joonseok, et al. "Collaborative Deep Metric Learning for Video Understanding." (2018).

More readings

- Cheng, Heng-Tze, et al. "Wide & deep learning for
recommender systems." Proceedings of the 1st Workshop on
Deep Learning for Recommender Systems. ACM, 2016.

- Covington, Paul, Jay Adams, and Emre Sargin. "Deep neural
networks for youtube recommendations." Proceedings of the
10th ACM Conference on Recommender Systems. ACM,
2016.

Real World RecSys

Cheng, Heng-Tze, et al. "Wide & deep learning for recommender systems." Proceedings of the
1st Workshop on Deep Learning for Recommender Systems. ACM, 2016.

https://github.com/jcjohnson/cnn-benchmarks

https://github.com/jcjohnson/cnn-benchmarks

https://github.com/jcjohnson/cnn-benchmarks

https://github.com/jcjohnson/cnn-benchmarks

ResNet-200 Benchmark

ResNet-200 Benchmark

https://techcrunch.com/2017/06/27/facebook-2-billion-users/

https://techcrunch.com/2017/06/27/facebook-2-billion-users/

https://techcrunch.com/2017/06/27/facebook-2-billion-users/

https://techcrunch.com/2017/06/27/facebook-2-billion-users/

https://www.quora.com/How-many-videos-are-on-YouTube-2017-1

As YouTube receives more than 90 PB of videos data every
year

It has more than 7 billion videos available out of 5 billion
videos watched every day by more than 30 million users

It will take more than 199771 Year to watch all videos available
on YouTube.

All data are stored at the Google modular Data center located
at different locations.

https://www.quora.com/How-many-videos-are-on-YouTube-2017-1

Technical difficulty: Scalability

Real-world RecSys should be able to handle
super super many queries (5B queries per day)

Real-world RecSys could compute similarity
over all-items (over 7B videos), even KNN takes
hopelessly long time

KNN

How can we make faster KNN?

complexity of Naïve method: O(d2N)

Easy way: reduce d or N (d -> 20, 10, filtering N)

Other ways:

- use data structure (tree, graph)

- quantization + indexing

-

Annoy

https://erikbern.com/2015/10/01/nearest-neighbors-and-vector-models-part-2-how-to-search-in-
high-dimensional-spaces.html

Build tree by
random projection

https://erikbern.com/2015/10/01/nearest-neighbors-and-vector-models-part-2-how-to-search-in-high-dimensional-spaces.html
https://erikbern.com/2015/10/01/nearest-neighbors-and-vector-models-part-2-how-to-search-in-high-dimensional-spaces.html

Priority Queue for ensuring "K"

Feature quantization + indexing

VQ (vector quantization)

quantize function (NN with centers)

K-means centers

More readings

- [Graph based ANN] Malkov, Yu A., and Dmitry A. Yashunin.
"Efficient and robust approximate nearest neighbor search
using Hierarchical Navigable Small World graphs." arXiv
preprint arXiv:1603.09320(2016).

- [end-to-end deep quantization method] Jeong, Yeonwoo,
and Hyun Oh Song. "Efficient end-to-end learning for
quantizable representations." ICML 2018

Dealing with streaming data

timestamp, user, item, referer

08-25 12:00, A , item1, -
08-25 12:10, A , item2, item1
08-25 12:11, A , item3, item2
08-25 12:11, B , item2, -
08-25 12:12, A , item4, item3
08-25 12:13, B , item1, item2
....

User history storage

Dealing with streaming data

New items

Feature extraction via
various models
(e.g. CF, CB,)

Feature storage

Model storage

Data storage

Incremental learning issue

User history storage
Model storage

Data storage

Data stream

Data stream
Update user / item model

ETL (Extract / Transform / Load)

Incremental learning issue

Model storage Feature storage

Update user / item model

Data storage

Recalculate features for all data

How to serve?

Model storage

Feature storage

1. Compute user /item feature
2. Choose A/B bucket
3. Get recommendation

results from various
models

4. Mix all of them up into
single list

5. Re-ranking using ranking
algorithm

Serve recommendations to users
Be updated frequently!
- incremental model learning (batch)
- dealing with NEW item / user (online)

Computation issue

Inference using Machine learning models
sometimes suffers from high computation cost

Possible solutions

- Caching & Indexing (i.e., save all
recommendations to databases)

- Use more light and fast models  
(not 'deep' model)

https://brunch.co.kr/@kakao-it/72

https://brunch.co.kr/@kakao-it/72

References

- Introduction to Recommender Systems in 2018, tryo labs
- How Does Spotify Know You So Well? (Medium)
- NETFLIX PRIZE – 다이나믹 했던 알고리즘 대회 (3), shalomeir's blog
- RecSys 2016: Tutorial on Lessons Learned from Building Real-life

Recommender Systems
- Recommender Systems @ML Summer School 2014 in Pittsburgh
- Koren, Yehuda, Robert Bell, and Chris Volinsky. "Matrix factorization

techniques for recommender systems." Computer 8 (2009): 30-37.
- Negahban, Sahand, Sewoong Oh, and Devavrat Shah. "Rank

centrality: Ranking from pairwise comparisons." Operations
Research 65.1 (2016): 266-287.

- TOROS: Python Framework for Recommender System

https://tryolabs.com/blog/introduction-to-recommender-systems/
https://medium.com/s/story/spotifys-discover-weekly-how-machine-learning-finds-your-new-music-19a41ab76efe
http://www.shalomeir.com/2014/12/netflix-prize-3/
https://www.youtube.com/watch?v=VJOtr47V0eo
https://www.youtube.com/watch?v=VJOtr47V0eo
https://youtu.be/mRToFXlNBpQ
https://www.slideshare.net/kimkwangseop/toros-python-framework-for-recommender-system/kr

References

- Chapelle, Olivier, and Lihong Li. "An empirical evaluation of
thompson sampling." Advances in neural information processing
systems. 2011.

- Komiyama, Junpei, Junya Honda, and Hiroshi Nakagawa. "Optimal
regret analysis of thompson sampling in stochastic multi-armed
bandit problem with multiple plays." ICML 2015

- Hidasi, Balázs, et al. "Session-based recommendations with
recurrent neural networks." ICLR 2016

- Quadrana, Massimo, et al. "Personalizing session-based
recommendations with hierarchical recurrent neural
networks." Proceedings of the Eleventh ACM Conference on
Recommender Systems. ACM, 2017.

References

- Van den Oord, Aaron, Sander Dieleman, and Benjamin Schrauwen.
"Deep content-based music recommendation." Advances in neural
information processing systems. 2013.

- Lee, Joonseok, et al. "Collaborative Deep Metric Learning for Video
Understanding." (2018).

- Cheng, Heng-Tze, et al. "Wide & deep learning for recommender
systems." Proceedings of the 1st Workshop on Deep Learning for
Recommender Systems. ACM, 2016.

- [카카오AI리포트] 내 손안의 AI 비서 추천 알고리즘

https://brunch.co.kr/@kakao-it/72

