### An Empirical Evaluation on the Generalization Ability of Regularization Methods

Sanghyuk Chun, CLOVA Al Research

#### NAVER | LINE Clova





#### AI Speaker (Clova Friends)

Speech Recognition Speech Synthesis Natural Language Understanding Retrieval, Recommendation, ...





Papago End-to-end Machine Translation



築技 TSUKI WAZA 築地の軒先で売られているのは、 ものだけじゃないんです。 開場から80年以上の歴史で育まれた 日利 きの知恵やノウバウを お客さまに伝え 持ち帰っていただく。 だから通えば通うほど、 料理の腕が上がっていく。 築地はそんな市場です。 すべての店に必ずある築地の技「築技(つきわざ)」。 来る開場 100年目 さらに先の未来に向けて 磨き続けていきますので どうぞこれからも築地にお越しください。

#### Clova OCR Text Detection

Text Recognition Document Parsing



築技 TSUKI WAZA 築地の軒先で売られているのは、 ものだけじゃないんです。 開場から80年以上の歴史で育まれた 日利 きの知恵やノウバウを お客さまに伝え 持ち帰っていただく。 だから通えば通うほど、 料理の腕が上がっていく。 築地はそんな市場です。 すべての店に必ずある築地の技「築技(つきわざ)」。 来る開場 100年目 さらに先の未来に向けて 磨き続けていきますので どうぞこれからも築地にお越しください。

Clova OCR Text Detection

Text Recognition Document Parsing Our new paper "Character Region Awareness for Text Detection" will be appeared in this CVPR! (Thu, June 20, 2019 10 AM, #4706)



# Human-level performance by ML models.



#### Deep models outperform humans in ImageNet validation top-5

Human vs. Deep models in selected ImageNet classes

Andrej Karpathy. <u>http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/</u> Geirhos, Robert, et al. "Generalisation in humans and deep neural networks." Advances in Neural Information Processing Systems. 2018.

# Human-level performance by ML models.

| System                                | Dev    |         | Te    | st   | System                         | Dev         |       | Test   |        |
|---------------------------------------|--------|---------|-------|------|--------------------------------|-------------|-------|--------|--------|
| -                                     | EM     | F1      | EM    | F1   |                                | EM          | F1    | EM     | F1     |
| Top Leaderboard System                | s (Dec | : 10th, | 2018) |      | Top Leaderboard Systems        | s (Dec      | 10th, | 2018)  |        |
| Human                                 | -      | -       | 82.3  | 91.2 | Human                          | 86.3        | 89.0  | 86.9   | 89.5   |
| #1 Ensemble - nlnet                   | -      | -       | 86.0  | 91.7 | #1 Single - MIR-MRC (F-Net)    | -           | -     | 74.8   | 78.0   |
| #2 Ensemble - QANet                   | -      | -       | 84.5  | 90.5 | #2 Single - nlnet              | -           | -     | 74.2   | 77.1   |
| Published                             |        |         |       |      | Published                      |             |       |        |        |
| BiDAF+ELMo (Single)                   | -      | 85.6    | -     | 85.8 | unet (Ensemble)                | -           | -     | 71.4   | 74.9   |
| R.M. Reader (Ensemble)                | 81.2   | 87.9    | 82.3  | 88.5 | SLQA+ (Single)                 | -           |       | 71.4   | 74.4   |
| Ours                                  |        |         |       |      | Ours                           |             |       |        |        |
| BERT <sub>BASE</sub> (Single)         | 80.8   | 88.5    | -     | -    | BERT <sub>LARGE</sub> (Single) | 78.7        | 81.9  | 80.0   | 83.1   |
| BERT <sub>LARGE</sub> (Single)        | 84.1   | 90.9    | -     | -    |                                |             |       |        |        |
| BERT <sub>LARGE</sub> (Ensemble)      | 85.8   | 91.8    | -     | -    | $T_{1}$                        | <b>TT</b> 7 | 1 1   |        | 1      |
| BERT <sub>LARGE</sub> (Sgl.+TriviaQA) | 84.2   | 91.1    | 85.1  | 91.8 | Table 3: SQUAD 2.0 results.    | we ex       | xclud | e entr | ies th |
| BERT <sub>LARGE</sub> (Ens.+TriviaQA) | 86.2   | 92.2    | 87.4  | 93.2 | use BERT as one of their comp  | onent       | ts.   |        |        |

Table 2: SQuAD 1.1 results. The BERT ensemble is 7x systems which use different pre-training checkpoints and fine-tuning seeds.

Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805 (2018).

# Human-level performance by ML models.

|               | Open-Ended |       |       |       | Multiple-Choice |       |       |       |
|---------------|------------|-------|-------|-------|-----------------|-------|-------|-------|
|               | All        | Y/N   | Num.  | Other | All             | Y/N   | Num.  | Other |
| DPPnet [19]   | 57.36      | 80.28 | 36.92 | 42.24 | 62.69           | 80.35 | 38.79 | 52.79 |
| D-NMN [2]     | 58.00      | -     | -     | -     | -               | -     | -     | -     |
| Deep Q+I [15] | 58.16      | 80.56 | 36.53 | 43.73 | 63.09           | 80.59 | 37.70 | 53.64 |
| SAN [29]      | 58.90      | -     | -     | -     | -               | -     | -     | -     |
| ACK [27]      | 59.44      | 81.07 | 37.12 | 45.83 | -               | -     | -     | -     |
| FDA 8         | 59.54      | 81.34 | 35.67 | 46.10 | 64.18           | 81.25 | 38.30 | 55.20 |
| DMN+ [28]     | 60.36      | 80.43 | 36.82 | 48.33 | -               | -     | -     | -     |
| MRN           | 61.84      | 82.39 | 38.23 | 49.41 | 66.33           | 82.41 | 39.57 | 58.40 |
| Human [1]     | 83.30      | 95.77 | 83.39 | 72.67 | -               | -     | -     | -     |

### Question: ML models are perfect?

### Question: ML models are perfect? ... So can we just leave the office?

### ML models are not perfect



#### Nvidia Tesla v100 16GB ★★★★★ ~ 6 More Buying Choices

\$6,699.00 (2 new offers)

| +          | IA-SMI       | 410.7       | 2                | ]          | Driver           | Version:         | 410.72              | ! (               | CUDA Vers           | ion: 10.0                     |
|------------|--------------|-------------|------------------|------------|------------------|------------------|---------------------|-------------------|---------------------|-------------------------------|
| GPU<br>Fan | Name<br>Temp | Perf        | Persis<br>Pwr:Us | ste<br>sag | ence-M<br>ge/Cap | Bus-Id           | Memory              | Disp.A<br>-Usage  | Volatile<br>GPU-Uti | e Uncorr. ECC<br>L Compute M. |
| 0<br>N/A   | Tesla<br>64C | M40 2<br>P0 | 4GB<br>229W      | /          | Off<br>250W      | 0000000<br>7516M | 0:04:00<br>iB / 24  | 0.0 Off<br>478MiB | 100%                | Off<br>Default                |
| 1<br>N/A   | Tesla<br>60C | M40 2<br>P0 | 4GB<br>244W      | /          | Off<br>250W      | 0000000<br>6659M | 0:05:00<br>iB / 24  | 0.0 Off<br>478MiB | 100%                | Off<br>Default                |
| 2<br>N/A   | Tesla<br>60C | M40 2<br>P0 | 4GB<br>220W      | /          | Off<br>250W      | 0000000<br>6659M | 0:84:00<br>iB / 24  | 0.0 Off<br>478MiB | 98%                 | Off<br>Default                |
| 3<br>N/A   | Tesla<br>61C | M40 2<br>P0 | 4GB<br>221W      | /          | Off<br>250W      | 0000000<br>6659M | 0:85:00<br> iB / 24 | 0.0 Off<br>478MiB | 98%                 | Off<br>Default                |

#### Person Pe

#### https://www.youtube.com/watch?v=MlbFvK2S9g8

#### Unreliable

#### Expensive

Thys, Simen, et al. "Fooling automated surveillance cameras: adversarial patches to attack person detection." CVPR 2019

Supervision: Human labeling Heavy resources for training

Heavy resources for inference

Expensive

| Expensive | Supervision:<br>Human labeling | Heavy resources<br>for training           | Heavy resources<br>for inference    |  |  |
|-----------|--------------------------------|-------------------------------------------|-------------------------------------|--|--|
|           | Weakly/semi-<br>supervised ML  | Smart res. alloc. sys.<br>(NSML) / AutoML | Lightweight model for CPU inference |  |  |

| Expensive | Supervision:<br>Human labeling | Heavy resources<br>for training           | Heavy resources<br>for inference       |  |
|-----------|--------------------------------|-------------------------------------------|----------------------------------------|--|
|           | Weakly/semi-<br>supervised ML  | Smart res. alloc. sys.<br>(NSML) / AutoML | Lightweight model<br>for CPU inference |  |

Too confident

Not robust

Unreliable

| Fxpensive | Supervision:<br>Human labeling | Heavy resources<br>for training           | Heavy resources<br>for inference    |  |
|-----------|--------------------------------|-------------------------------------------|-------------------------------------|--|
| Expensive | Weakly/semi-<br>supervised ML  | Smart res. alloc. sys.<br>(NSML) / AutoML | Lightweight model for CPU inference |  |

| Unreliable | Too confident                  | Not robust    |
|------------|--------------------------------|---------------|
| Unreliable | Bayesian /<br>probabilistic ML | ML robustness |





# For the Remaining Talk,

- Introduction to ML robustness and uncertainty estimates
- Unexpected improvements of robustness & uncertainty by state-of-the-art regularization techniques
- Side topic: robustness in non-vision data (music)

### **DNNs** behave fundamentally differently from humans.



**Digital clock (0.2)** (Out-of-dist.)

bubble (0.5)(+ Gaussian Noise)

brain coral (1.0)

(adversarially attacked)

Cauliflower (1.0)

(Clean Image)

## DNNs are easily fooled.



╋

Cauliflower (1.0) (Clean Image)



Human imperceptible noise



#### brain coral (1.0) (adversarially attacked)

# DNNs are unstable against natural corruptions.





Geirhos, Robert, et al. "Generalisation in humans and deep neural networks." Advances in Neural Information Processing Systems. 2018. Hendrycks, Dan, and Thomas Dietterich. "Benchmarking neural network robustness to common corruptions and perturbations." ICLR 2019

# Random erasing to improve occlusion stability.



#### CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features.

Sangdoo Yun Clova Al Research, Naver Corp. Dongyoon Han Clova Al Research, Naver Corp.

Seong Joon Oh Clova Al Research, LINE Plus Corp.

Sanghyuk Chun Clova Al Research, Naver Corp. Junsuk Choe Yonsei University\* Youngjoon Yoo Clova Al Research, Naver Corp.

\* Visit researcher at Clova AI at the time.

## CutMix in a nutshell.



- Unlike Cutout, CutMix uses all input pixels for training.
- Unlike Mixup, CutMix presents realistic local image patches.
- Only 20 lines of code: <u>https://github.com/ClovaAI/CutMix-PyTorch</u>

### Occlusion robustness and Positive side-effects.



### Classification performance.

| Model                      | # Params | Top-1<br>Err (%) | Top-5<br>Err (%) |
|----------------------------|----------|------------------|------------------|
| ResNet-152*                | 60.3 M   | 21.69            | 5.94             |
| ResNet-101 + SE Layer*     | 49.4 M   | 20.94            | 5.50             |
| ResNet-101 + GE Layer*     | 58.4 M   | 20.74            | 5.29             |
| ResNet-50 + SE Layer*      | 28.1 M   | 22.12            | 5.99             |
| ResNet-50 + GE Layer*      | 33.7 M   | 21.88            | 5.80             |
| ResNet-50 (Baseline)       | 25.6 M   | 23.68            | 7.05             |
| ResNet-50 + Cutout         | 25.6 M   | 22.93            | 6.66             |
| ResNet-50 + StochDepth     | 25.6 M   | 22.46            | 6.27             |
| ResNet-50 + Mixup          | 25.6 M   | 22.58            | 6.40             |
| ResNet-50 + Manifold Mixup | 25.6 M   | 22.50            | 6.21             |
| ResNet-50 + DropBlock*     | 25.6 M   | 21.87            | 5.98             |
| ResNet-50 + Feature CutMix | 25.6 M   | 21.80            | 6.06             |
| ResNet-50 + CutMix         | 25.6 M   | 21.60            | 5.90             |
| ResNet-50 + AutoAugment    | 25.6M    | 22.4*            | 6.2*             |

- Great improvement over baseline.
- Better than existing regularizations.
- ResNet-50 + CutMix is better than ResNet-150.

#### \* reported values from the reference paper

## Localizable Features.

| Method    | CUB200-2011<br>Loc Acc (%) | ImageNet<br>Loc Acc (%) |
|-----------|----------------------------|-------------------------|
| ResNet-50 | 49.41                      | 46.30                   |
| Mixup     | 49.30                      | 45.84                   |
| Cutout    | 52.78                      | 46.69                   |
| CutMix    | 54.81                      | 47.25                   |



- CutMix makes model attend more "local" features unlike Mixup and Cutout.
- CutMix does not waste pixels during training.
- <sup>0.75)</sup> Great improvements in localization tasks

## Localizable Features.

| Method    | CUB200-2011<br>Loc Acc (%) | ImageNet<br>Loc Acc (%) |  |
|-----------|----------------------------|-------------------------|--|
| ResNet-50 | 49.41                      | 46.30                   |  |
| Mixup     | 49.30                      | 45.84                   |  |
| Cutout    | 52.78                      | 46.69                   |  |
| CutMix    | 54.81                      | 47.25                   |  |



- CutMix makes model attend more "local" features unlike Mixup and Cutout.
- CutMix does not waste pixels during training.
- Great improvements in localization tasks

## Transfer Learning.

| Backhone             | ImageNet Cls    | Γ           | Detection           | Image Captioning            |             |  |
|----------------------|-----------------|-------------|---------------------|-----------------------------|-------------|--|
| Notwork              | Top 1 Error (%) | SSD [23]    | Faster-RCNN [29]    | NIC [41]                    | NIC [41]    |  |
| INCLWOIK             | 10p-1 EII0I(%)  | (mAP)       | (mAP)               | (BLEU-1)                    | (BLEU-4)    |  |
| ResNet-50 (Baseline) | 23.68           | 76.7 (+0.0) | 75.6 (+0.0)         | 61.4 (+0.0)                 | 22.9 (+0.0) |  |
| Mixup-trained        | 22.58           | 76.6 (-0.1) | 73.9 (-1.7)         | 61.6 (+0.2)                 | 23.2 (+0.3) |  |
| Cutout-trained       | 22.93           | 76.8 (+0.1) | 75.0 (-0.6)         | 63.0 (+1.6)                 | 24.0 (+1.1) |  |
| CutMix-trained       | 21.60           | 77.6 (+0.9) | <b>76.7 (+1.1</b> ) | <b>64.2</b> (+ <b>2.8</b> ) | 24.9 (+2.0) |  |

- Localizability makes CutMix models attractive choices as pre-trained models.
- Improves tasks with localization elements: detection & captioning.

### Robustness.



|               | Baseline | Mixup | Cutout | CutMix |
|---------------|----------|-------|--------|--------|
| Top-1 Acc (%) | 8.2      | 24.4  | 11.5   | 31.0   |

 CutMix shows better robustness than Mixup and Cutout in occlusion, in-between class samples and FGSM attack

### Conclusion

- CutMix is a simple yet effective regularization technique for classification task
- CutMix shows better localization ability than previous methods such as Cutout, Mixup
- We observed that CutMix is effective for transfer learning, i.e., pre-training model for detection and captioning
- CutMix shows better robustness against occlusion, in-between class samples and adversarial noise

### More details are in our paper!

- CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features. Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, Youngjoon Yoo
- <u>https://arxiv.org/abs/1905.04899</u>
- <u>https://github.com/ClovaAI/CutMix-PyTorch</u>



### An Empirical Evaluation on Robustness and Uncertainty of Regularization Methods

Sanghyuk Chun Clova Al Research, Naver Corp. Seong Joon Oh Clova Al Research, LINE Plus Corp.

Sangdoo Yun Clova Al Research, Naver Corp.

Dongyoon Han Clova Al Research, Naver Corp. Junsuk Choe Yonsei University\*

Youngjoon Yoo Clova Al Research, Naver Corp.

\* Visit researcher at Clova AI at the time.

### Generalization is matter.



|                               | Normal training – <mark>86</mark>                                                                                                                                                                                                                | 28 2 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                   | 60 13 1 1 1 1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 70 45 15 3 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23 2 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                         | 78 49 7 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Attack (adversarial training) | $L_{\infty} \varepsilon = 1 - 85$ $L_{\infty} \varepsilon = 2 - 85$ $L_{\infty} \varepsilon = 4 - 83$ $L_{\infty} \varepsilon = 8 - 79$ $L_{\infty} \varepsilon = 16 - 70$ $L_{\infty} \varepsilon = 32 - 54$                                    | 83       68       14       1       1       1         84       79       48       3       1       1         82       81       72       23       1       1         79       78       75       58       6       1         70       70       69       64       32       2         53       52       50       39       11       1                                                                    | 84       80       49       4       1       1         84       82       70       20       1       1         83       82       78       49       4       1         79       78       76       60       14       1         70       69       64       43       7       1         53       49       35       9       1       1                                                                                                                                                                                                                                                                             | 79       69       43       12       2       1       1         80       73       55       24       4       1       1         79       74       61       36       8       1       1         79       74       61       36       8       1       1         75       70       59       39       14       3       1         64       53       37       17       4       1       1         40       28       13       5       1       1       1                                                                                                       | 83       70       15       1       1       1         84       80       48       2       1       1         82       80       66       11       1       1         79       77       66       23       2       1         69       67       47       9       1       1         49       38       15       2       1       1                                                                              | 83753941118377519111817862162117876663231169676345122152504429821                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                               | $L_{2} \varepsilon = 150 - 86$ $L_{2} \varepsilon = 300 - 85$ $L_{2} \varepsilon = 600 - 84$ $L_{2} \varepsilon = 1200 - 80$ $L_{2} \varepsilon = 2400 - 76$ $L_{2} \varepsilon = 4800 - 68$                                                     | 80         50         3         1         1         1           82         72         20         1         1         1           83         80         55         5         1         1           80         79         71         27         2         1           76         75         73         55         7         1           68         67         66         60         25         1 | 84         77         32         2         1         1           84         81         64         9         1         1           84         83         77         41         2         1           84         83         77         41         2         1           80         80         78         67         15         1           76         76         75         72         47         3           68         68         67         66         58         19                                                                                                                                  | 80         70         42         9         1         1         1           82         76         60         24         4         1         1           82         76         60         24         4         1         1           82         80         72         49         12         1         1           79         79         75         65         37         6         1           75         75         74         69         57         25         3           67         67         67         65         61         44         15 | 80       48       3       1       1       1         83       72       22       1       1       1         83       81       60       6       1       1         80       79       74       37       2       1         76       75       74       61       13       1         68       67       67       63       37       3                                                                            | 83712821118376455111837857111117977652321175736739511676663481231                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                               | $L_{1} \varepsilon = 9562.5 - 85$ $L_{1} \varepsilon = 19125 - 85$ $L_{1} \varepsilon = 38250 - 84$ $L_{1} \varepsilon = 76500 - 83$ $L_{1} \varepsilon = 153000 - 79$ $L_{1} \varepsilon = 306000 - 76$ $L_{1} \varepsilon = 612000 - 70$       | 72       31       2       1       1       1         78       50       6       1       1       1         81       65       19       1       1       1         81       73       39       3       1       1         78       75       57       11       1       1         75       72       61       25       2       1         70       68       59       33       4       1                    | 83         68         21         1         1         1           83         76         42         3         1         1           83         76         42         3         1         1           83         76         61         12         1         1           83         80         61         12         1         1           82         80         71         31         2         1           79         78         73         52         8         1           76         75         72         59         20         2           70         69         67         56         29         3 | 83         78         62         24         3         1         1           84         81         73         45         8         1         1           83         82         77         63         24         2         1           82         82         77         63         48         8         1           79         79         79         76         65         29         3           76         76         75         72         58         18           70         71         70         70         69         64                   | 72       28       2       1       1       1         79       51       6       1       1       1         81       70       26       2       1       1         81       75       51       8       1       1         78       77       67       31       3       1         75       74       71       55       12       1                                                                               | 82       68       24       2       1       1       1         83       73       34       3       1       1       1         82       76       46       5       1       1       1         81       76       56       11       1       1         79       76       63       20       1       1       1         75       72       65       31       3       1       1         68       67       62       39       6       2       1                                                                                                      |
|                               | JPEG $\varepsilon = 0.03125 - 85$<br>JPEG $\varepsilon = 0.0625 - 85$<br>JPEG $\varepsilon = 0.125 - 85$<br>JPEG $\varepsilon = 0.25 - 83$<br>JPEG $\varepsilon = 0.5 - 80$<br>JPEG $\varepsilon = 1 - 76$                                       | 73       27       2       1       1       1         79       46       4       1       1       1         82       67       16       1       1       1         82       77       41       3       1       1         79       77       64       18       1       1         76       74       69       34       3       1                                                                          | 81       58       9       1       1       1         83       71       20       2       1       1         83       78       44       4       1       1         82       80       65       14       1       1         79       78       73       42       4       1         76       75       73       57       11       1                                                                                                                                                                                                                                                                               | 76         58         25         5         1         1         1           77         64         32         6         1         1         1           79         70         45         13         2         1         1           80         73         56         24         3         1         1           78         74         63         41         10         2         1           75         72         67         50         21         4         1                                                                                   | 84         80         54         4         1         1           85         83         74         19         1         1           84         84         81         57         2         1           83         83         82         76         18         1           80         80         79         78         63         2           76         76         76         75         71         15 | 82         66         18         2         1         1         1           82         69         21         2         1         1         1           82         73         33         2         1         1         1           82         73         33         2         1         1         1           81         74         41         4         1         1         1           79         75         54         9         1         1         1           75         73         57         15         2         1         1 |
|                               | Elastic $\varepsilon = 0.25 - 86$<br>Elastic $\varepsilon = 0.5 - 84$<br>Elastic $\varepsilon = 1 - 85$<br>Elastic $\varepsilon = 2 - 82$<br>Elastic $\varepsilon = 4 - 80$<br>Elastic $\varepsilon = 8 - 76$<br>Elastic $\varepsilon = 16 - 74$ | 6517211173323111764461117752111117452122116943911162305111                                                                                                                                                                                                                                                                                                                                     | 78       48       7       1       1       1         81       62       16       1       1       1         81       68       25       2       1       1         80       71       37       5       1       1         77       68       33       4       1       1         66       42       10       1       1       1         59       50       50       50       50       50       50                                                                                                                                                                                                                  | 77       59       28       6       1       1       1         78       65       40       12       3       1       1         76       67       44       17       4       1       1         75       65       46       21       5       1       1         67       55       34       15       3       1       1         54       37       20       7       2       1       1         42       24       9       3       1       1       1                                                                                                           | 65       18       2       1       1       1         75       40       4       1       1       1         79       56       12       1       1       1         78       59       17       2       1       1         72       44       9       1       1       1         57       19       3       1       1       1         39       8       1       1       1       1                                 | 84       76       41       3       1       1       1         84       80       63       14       1       1       1         84       80       63       14       1       1       1         84       82       77       49       4       1       1         82       81       80       72       26       2       1         79       79       78       77       68       11       1         76       75       74       75       73       42       5         73       72       71       70       69       45       14                      |
|                               | 403tro 10                                                                                                                                                                                                                                        | $e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}$                                                                                                                                                                                                                                                                                                                                                     | he he he he he he h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 52 19 30 10 153 300 612<br>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PAC ACC ACC ACC ACC AND                                                                                                                                                                                                                                                                                                                                          | sti dast ast dast dast astic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

Attack (evaluation)

Kang, Daniel, et al. "Transfer of Adversarial Robustness Between Perturbation Types." ICML 2019 UDL workshop

1.0

- 0.8

Adversarial accuracy

- 0.2

L 0.0

# Current solutions are complicated and expensive: Adversarial training.



# Current solutions are complicated and expensive: Adversarial training.

• Improve robustness by solving expensive minimax problem

$$\min_{\theta} \sum_{i}^{n} \max_{\varepsilon \in \mathcal{E}} \ell(f_{\theta}(x + \varepsilon, y))$$

Inner max problem is generally approximated by adversarial attacks: They are too expensive at scale

#### **Training Speed:**

With 30 attack iterations during training, the Res152 Baseline model takes about 52 hours to finish training on 128 V100s.

Under the same setting, the Res152 Denoise model takes about 90 hours on 128 V100s. Note that the model actually does not add much computation to the baseline, but it lacks efficient GPU implementation for the softmax version of non-local operation. The dot-product version, on the other hand, is much faster.

#### https://github.com/facebookresearch/ImageNet-Adversarial-Training/blob/master/INSTRUCTIONS.md

# There are many cheap and effective regularization methods

- Augmentation methods:
  - Cutout, Mixup, CutMix
- Randomly feature drop:
  - Dropout, DropBlock, ShakeShake, ShakeDrop
- Label noise
  - Label smoothing, Mixup, CutMix
- In this talk, we do not consider the methods with additional parameters such as SE block, GE block

# Selected regularization methods: ShakeDrop



(d) ShakeDrop for 2- and 3-branch ResNet family

$$G(x) = \begin{cases} x + \alpha F_1(x) + (1 - \alpha)F_2(x), & \text{in train-fwd} \\ x + \beta F_1(x) + (1 - \beta)F_2(x), & \text{in train-bwd} \\ x + E[\alpha]F_1(x) + E[1 - \alpha]F_2(x), & \text{in test,} \end{cases}$$

# Selected regularization methods: Label smoothing



Deep model

# Selected regularization methods: Label smoothing



### Benchmark 1: Adversarial robustness

- FGSM (Fast Gradient Sign Method)
- Note: regularization methods can not provide provable defense to adversarial robustness

### Benchmark 2: Non-adversarial robustness

- Occlusion
- ImageNet-C: Noise, blur, weather change, digital



Hendrycks, Dan, and Thomas Dietterich. "Benchmarking neural network robustness to common corruptions and perturbations." ICLR 2019

## **CIFAR-100 Results**

|                           | CIFAR-100  | FGSM       | Occlusion    | CIFAR-C      | Noise      | Blur       | Weather    | Digital    |
|---------------------------|------------|------------|--------------|--------------|------------|------------|------------|------------|
| Methods                   | Top-1 Err. | Top-1 Err. | Top-1 Err.   | mCE          | Top-1 Err. | Top-1 Err. | Top-1 Err. | Top-1 Err. |
| Baseline (PyramidNet-200) | 16.45      | 84.20      | 72.19        | 45.11        | 74.62      | 46.77      | 30.66      | 38.65      |
| Adversarial Logit Pairing | 24.75      | 51.32      | 92.27        | 50.04        | 69.94      | 51.75      | 40.62      | 44.70      |
| Cutout                    | 16.53      | 91.07      | <b>27.00</b> | 51.65        | 89.77      | 51.40      | 34.24      | 43.20      |
| Add Gaussian Noise        | 19.49      | 85.08      | 73.23        | <b>42.01</b> | 54.63      | 48.42      | 31.54      | 38.48      |

- Observation: a targeted solution only solves the targeted problem (e.g., Cutout only improves occlusion robustness while worsen FGSM and CIFAR-100-C robustness)
- A similar result is shown by Geirhos, et al., 2018

Geirhos, Robert, et al. "Generalisation in humans and deep neural networks." Advances in Neural Information Processing Systems. 2018.

## **CIFAR-100 Results**

| Method                                                                                     | CIFAR-100<br>Top-1 Err.            | FGSM<br>Top-1 Err.                 | CIFAR-C<br>Top-1 Err.                                           | Occlusion<br>Top-1 Err.            |
|--------------------------------------------------------------------------------------------|------------------------------------|------------------------------------|-----------------------------------------------------------------|------------------------------------|
| Baseline (PyramidNet-200)<br>Cutout + SD + LS<br>Mixup + SD + LS<br>CutMix + SD + LS       | $16.45 \\ 13.49 \\ 14.79 \\ 13.83$ | $84.20 \\ 69.59 \\ 56.32 \\ 62.72$ | $\begin{array}{c} 45.11 \\ 43.86 \\ 40.32 \\ 44.99 \end{array}$ | $72.19 \\ 26.33 \\ 56.76 \\ 34.96$ |
| Adversarial Logit Pairing<br>Add Gaussian Noise<br>OOD augment (SVHN)<br>OOD augment (GAN) | $24.75 \\19.49 \\38.80 \\34.78$    | 51.32<br>85.08<br>97.35<br>94.65   | 50.04<br>42.01<br>67.03<br>57.09                                | $92.27 \\73.23 \\79.13 \\85.30$    |

 Good regularization methods are strong baselines, i.e., they are "generally" better than specific solutions and the baseline.

## ImageNet Results

|                      | Average | Clean | FGSM  | Occ.  | Noise | Blur  | Weather | Digital | mCE   |
|----------------------|---------|-------|-------|-------|-------|-------|---------|---------|-------|
| Baseline (ResNet-50) | 67.43   | 23.68 | 91.85 | 46.01 | 78.58 | 86.63 | 64.99   | 80.24   | 77.55 |
| Label Smoothing      | 62.67   | 22.31 | 73.60 | 44.35 | 77.08 | 82.30 | 61.72   | 77.33   | 74.44 |
| ShakeDrop            | 64.57   | 22.03 | 87.19 | 42.98 | 76.13 | 83.42 | 61.56   | 78.69   | 74.87 |
| ShakeDrop + LS       | 61.45   | 21.92 | 72.65 | 42.85 | 74.47 | 82.15 | 60.47   | 75.67   | 73.10 |
| Cutout               | 64.81   | 22.93 | 88.50 | 29.72 | 79.94 | 85.37 | 65.34   | 81.87   | 78.01 |
| Cutout + LS          | 61.90   | 22.02 | 75.24 | 29.08 | 79.80 | 84.51 | 62.72   | 79.93   | 76.54 |
| Mixup                | 61.46   | 22.58 | 75.60 | 44.20 | 73.09 | 81.49 | 58.83   | 74.42   | 71.88 |
| Mixup + LS           | 58.54   | 22.41 | 69.43 | 42.31 | 65.36 | 82.95 | 53.37   | 73.94   | 69.14 |
| CutMix               | 62.08   | 21.60 | 69.04 | 30.09 | 80.88 | 84.87 | 64.11   | 83.95   | 78.29 |
| CutMix + LS          | 61.02   | 21.87 | 67.41 | 31.51 | 77.01 | 84.61 | 63.13   | 81.56   | 76.55 |
| CutMix + SD          | 61.75   | 21.60 | 80.00 | 31.28 | 77.06 | 84.18 | 61.04   | 77.07   | 74.69 |
| CutMix + SD + LS     | 60.96   | 21.90 | 68.65 | 31.62 | 76.04 | 84.53 | 62.82   | 81.16   | 76.14 |

- Largely similar to CIFAR-100 results
- We observe that Mixup + LS shows the best performance in ImageNet-C mCE than other expensive methods

### Conclusion

- Simple regularization techniques are effective in enhancing robustness and uncertainty estimation.
- Well-regularized models achieve state-of-the-art robustness (e.g., 69.14% mCE for Mixup + LS).
- Methods for specific tasks (e.g., adversarial training, Cutout) do not generalize to other tasks.
- State-of-the-art regularization methods (e.g., Cutout, Mixup, CutMix, ShakeDrop, label smoothing) should be considered as powerful baselines.

### More details are in our paper!

- An Empirical Evaluation on Robustness and Uncertainty of Regularization Methods. Sanghyuk Chun, Seong Joon Oh, Sangdoo Yun, Dongyoon Han, Junsuk Choe, Youngjoon Yoo
- Presented in ICML 2019 Uncertainty & Robustness in Deep Learning Workshop (Friday)



### Side Topic: Robustness in non-vision data (music).

#### Visualizing and Understanding Self-attention based Music Tagging

Minz Won Music Technology Group, Universitat Pompeu Fabra <u>Sanghyuk Chun</u> Clova Al Research, Naver Corp.

Xavier Serra Music Technology Group, Universitat Pompeu Fabra

#### Also matters to other domains; Music Understanding.





124 BPM Predicted to ChaChaCha (correct)

130 BPM Predicted to Tango (fooled)

#### Also matters to other domains; Music Understanding.





124 BPM Predicted to ChaChaCha (correct)

130 BPM Predicted to Tango (fooled)

#### Interpretability is the matter; Where is attended by the model?

Observation 1: Model focuses on "energy"





Attention heat map

#### Interpretability is the matter; Where is attended by the model?

Observation 2: Models understand the music with only small chunks



**Confidence of "Quiet"** 

Confidence of "Loud"

### More details are in our paper!

- Visualizing and Understanding Self-attention based Music Tagging. Minz Won, Sanghyuk Chun, Xavier Serra
- Presented in ICML 2019 Machine Learning for Music Discovery Workshop (Contribute Talk, Saturday)



# Conclusion and future works.

### Conclusion and future works.

- Training strategy changes the property of models without any changes in architectures
  - e.g., adversarial training, CutMix, ...
- The direct noise augmentation is a good solution to the specific robustness problem but it cannot be generalized.
- We should consider not only specific robustness but also the generalization ability of deep models for future works.

## See you at...

#### NAVER & LINE Booth #111 (SUN, MON, TUE, WED)

Poster and Oral talk for "Curiosity-Bottleneck: Exploration By Distilling Task-Specific Novelty" (TUE)

Poster session at UDL workshop, "An Empirical Evaluation on Robustness and Uncertainty of Regularization Methods" (FRI)

Contributed talk at ML4DL workshop, "Visualizing and Understanding Self-attention based Music Tagging" (SAT)

# Internship & full-time opportunities at Clova.

• We do lots of exiting researches at Clova AI!

**Machine Learning** 

- Lightweight models
- Regularization methods
- Uncertainty estimation
- ML Robustness & adversarial learning
- AutoML
- Reinforcement learning

#### **Computer Vision**

- OCR
- Detection & segmentation (object, human, face)
- Pose estimation & action recognition
- Generative models

Natural Language Processing

- Large-scale language model
- Goal-oriented dialog

# Internship & full-time opportunities at Clova.

- Positions: Research Scientist / AI Software Engineer / Research Internship / Global Residency
- Job descriptions: <u>https://clova.ai/en/research/careers.html</u>
- Please contact via <u>clova-jobs@navercorp.com</u>